# 6<sup>th</sup> Line Municipal Class Environmental Assessment

County Road 27 to St John's Road Town of Innisfil, ON

September 6, 2016

APPENDIX F: FACTUAL GEOTECHNICAL AND PAVEMENT DESIGN REPORT November 13, 2015

# FACTUAL GEOTECHNICAL AND PAVEMENT DESIGN REPORT

# CLASS ENVIRONMENTAL ASSESSMENT FOR 6th LINE FROM 20th SIDEROAD TO ST. JOHN'S ROAD, INNISFIL, ONTARIO

Submitted to: Cheryl Murray, P.E. HDR Inc. 100 York Blvd., Suite 300 Richmond Hill, Ontario L4B 1J8

REPORT

Report Number: 14-13283 Distribution: 4 Copies - HDR Inc. 1 Copy - Golder Associates Ltd.





# **Table of Contents**

| 1.0 | INTRO | DUCTION                                                              | 1  |
|-----|-------|----------------------------------------------------------------------|----|
| 2.0 | SCOPE | OF WORK                                                              | 2  |
| 3.0 | PROJE | CT UNDERSTANDING                                                     | 2  |
| 4.0 | INVES | FIGATION PROCEDURES                                                  | 3  |
| 5.0 | SUBSU | IRFACE CONDITIONS                                                    | 3  |
|     | 5.1   | Existing Pavement and Subgrade Conditions                            | 4  |
|     | 5.1.1 | Buried Asphaltic Material                                            | 5  |
|     | 5.1.2 | Organic Material                                                     | 5  |
|     | 5.2   | Subsoil Conditions for Service Installations                         | 6  |
|     | 5.3   | Shallow Groundwater                                                  | 6  |
| 6.0 | DISCU | SSION AND RECOMMENDATIONS                                            | 7  |
|     | 6.1   | Pavement Design and Recommendations                                  | 7  |
|     | 6.1.1 | Traffic Loading and Pavement Structural Analysis                     | 7  |
|     | 6.1.2 | Other Design Features and Construction Considerations                | 9  |
|     | 6.2   | Geotechnical Considerations for Installation of Underground Services | 11 |
|     | 6.2.1 | Trench Excavations                                                   | 11 |
|     | 6.2.2 | Pipe Bedding and Cover                                               | 12 |
|     | 6.2.3 | Trench Backfill                                                      | 13 |
| 7.0 | CLOSU | IRE                                                                  | 13 |

#### ATTACHMENTS

Method of Soil Classification and Symbols and Terms Used on Records of Boreholes and Test Pits Record of Boreholes Sheets – BH101 to BH108

Table 1 – Record of Pavement Boreholes - Section 1

**Table 2** – Record of Pavement Boreholes - Section 2

Table 3 – Record of Hand Auger Boreholes - Section 1

Table 4 – Record of Coring

Figure 1 - Key Plan Figures 2A to 2E – Borehole Investigation Plans Figures 3A to 3C – Site Photographs Figure 4 – Pavement Condition Survey



APPENDICES

APPENDIX A Important Information and Limitation of This Report

APPENDIX B Laboratory Test Results - Grain Size Distribution

APPENDIX C AASHTO Pavement Design Sheets



# 1.0 INTRODUCTION

The Town of Innisfil (Town) has retained HDR Inc. (HDR) as the Project Management Consultant to complete the Municipal Class Environmental Assessment (EA) and Preliminary Design Study for the widening and potential rehabilitation or reconstruction of the 6<sup>th</sup> Line from County Road 27 to St. John's Road, in the Town of Innisfil, County of Simcoe, Ontario. Golder Associates Ltd. (Golder) is part of the HDR team and is providing factual geotechnical engineering information and preliminary pavement engineering services for the project.

The pavement engineering component of the project includes a visual reconnaissance survey, a limited number of boreholes, material sampling laboratory testing, and the preparation of a preliminary Pavement Design Report while the geotechnical component includes a limited number of boreholes, material sampling, laboratory testing and factual geotechnical information for buried municipal services such as sanitary and storm sewers and water mains included in the report.

Currently 6<sup>th</sup> Line is a 2-lane road with a posted speed of 80 km/h. Based on predicted future uses, the segment of roadway between 20 Sideroad to St. John's Road (approximately 3 km in length, and including the planned Sleeping Lion Development) is anticipated to have future urbanized characteristics, while the segment from County Road 27 to 20 Sideroad (approximately 12 km in length, with mostly agricultural properties) will operate as a rural section.

Based on the recommendation from the 2013 Transportation Master Plan, and additional assessment conducted through this EA study, the Town is proposing to widen 6<sup>th</sup> Line, between 20 Sideroad and St. John's Road, from a 20 m wide 2-lane local road to a 26-30 m wide 4-lane *urban major collector road*, and proposing to reconstruct 6<sup>th</sup> Line, between County Road 27 and 20 Sideroad, from a 20 m 2-lane local road to a 2-lane *rural arterial road* with paved shoulders and 30 m right-of-way protection. The project limits are shown on the Key Plan, Figure 1.

In addition to confirming the cross section and preliminary conceptual design of the roadway, the study will review the need for the following corridor features:

- Bike lanes or multi-use trails;
- Potential need for a future interchange at Highway 400;
- New structure or structure widening over the existing GO rail line;
- Intersection improvements.

This report summarizes the results of the preliminary geotechnical investigation and provides preliminary pavement design recommendations. The factual geotechnical data and preliminary pavement designs should be reviewed, and updated during the detailed design stage.



# 2.0 SCOPE OF WORK

The geotechnical and pavement scope of work includes the following:

- A visual pavement condition survey evaluating the existing condition of the pavement;
- A pavement investigation consisting of a limited number of shallow boreholes on the mainlanes and in the widening areas as well as full depth cores to check the thickness of the surface treatment/asphalt layers;
- A geotechnical investigation consisting of limited number of deeper boreholes to assess the suitability of the subgrade soils and shallow groundwater conditions for the installation of underground services;
- A laboratory testing program on selected granular and subgrade soils samples;
- Pavement engineering analysis and design to provide recommendations for the preferred design strategies; and,
- Factual geotechnical information to support the design of underground services for Section 1.

This report should be read in conjunction with the "Important Information and Limitations of This Report" in Appendix A. The reader's attention is specifically drawn to this information, as it is essential for the proper use and interpretation of this report.

### 3.0 PROJECT UNDERSTANDING

The 6<sup>th</sup> Line is currently an east-west local road extending from County Road 27 easterly to Lake Simcoe. Section 1, from the 20<sup>th</sup> Sideroad to St. John's Road, is a two lane rural facility with an aged surface treatment wearing course over the major part with short sections surfaced with asphalt, mainly at the intersections with the 20<sup>th</sup> Sideroad and St John's Road.

We understand the Town is planning to upgrade Section 1 to an urban cross section by reconstruction and widening as required, to accommodate up to four lanes as well as provide left turn lanes between the  $20^{th}$  Sideroad and future Street B (~1.9 km). A two lane urban cross section will be provided from Street B to St. John's Road (~1.1 km).

Section 2, from County Road 27 to the 20<sup>th</sup> Sideroad is currently a two lane rural facility with an aged surface treatment wearing surface over the majority of its length with short sections of asphalt wearing surface near the intersections with 5<sup>th</sup>, 10<sup>th</sup>, and 20<sup>th</sup> Sideroads, Yonge Street, and County Road 27, and the Hwy 400 overpass.

The Town is planning to upgrade this section of 6<sup>th</sup> Line to accommodate higher traffic loading based on future growth in the area and the potential future construction of an interchange at Highway 400. Eventually Section 2 may also be widened to accommodate up to four lanes of traffic, but in the interim, the current two lane rural cross section will be maintained.

Photographs showing the conditions on the existing pavement are provided on Figures 3A to 3C following the text of this report.





# 4.0 INVESTIGATION PROCEDURES

The field investigation was carried out on April 15<sup>th</sup> and April 16<sup>th</sup>, 2015. Eight (8) deeper boreholes to obtain geotechnical information for site servicing, eight (8) shallow boreholes through the existing pavement, ten (10) shallow hand auger holes in the pavement widening areas and six full depth cores to check the surface treatment and asphalt thicknesses, were advanced within the limits of Section 1. Twelve (12) shallow boreholes through the existing pavement and four (4) coreholes to check the existing wearing surface thicknesses were advanced within the limits of Section 2. A topographic survey to locate the boreholes was not part of this assignment and the boreholes were marked in the field based on measurements from site features. As such, the recorded locations are considered approximate. Borehole elevations were provided by HDR. The boreholes/auger holes were advanced to depths of approximately 1.0 m to 8.0 m below the existing ground surface. Boreholes drilled through the existing pavement were advanced using a truck mounted drill rig supplied by KC Drilling Ltd. Portable gasoline-powered hand augering/spooning equipment was used to drill the boreholes located in the widening areas.

Groundwater conditions and water levels in the open boreholes were observed during and upon completion of drilling operations. Two 19 mm diameter piezometers were installed, one in Borehole BH103, and the other in BH104 to allow for groundwater level monitoring.

The boreholes that did not have piezometers were backfilled with bentonite upon completion, in accordance with Ontario Regulation 903 (as amended) and the road surface was reinstated using dry mix and/or cold asphalt patch. Backfill around the piezometers consisted of filter sand within the slotted screen section, above which bentonite pellets were placed to create a seal. Soil cutting were placed above the bentonite seal to ground surface. Flush mount covers were provided to access the piezometers.

The fieldwork was monitored by members of Golder's technical staff, who located the boreholes and coreholes, arranged for the clearance of the underground services, observed the drilling, sampling and in situ testing operations, logged the boreholes, and examined the recovered granular and subgrade samples. The samples were identified in the field, placed in appropriate containers, labelled and transported to Golder's geotechnical laboratory where the samples underwent further visual examination and laboratory testing. Classification testing (water content and grain size distribution) was carried out on selected samples. Record of Borehole sheets for the boreholes advanced for site servicing are provided following the text of this report while the results of boreholes advanced within the existing pavement and in the widening areas are provided in Tables 1 to 3. Corehole information is provided in Table 4.

# 5.0 SUBSURFACE CONDITIONS

Stratigraphic boundaries shown on the Record of Borehole sheets are inferred from non-continuous sampling and, therefore, represent transitions between soil types rather than exact planes of geological change. The subsoil conditions are expected to vary between and beyond the borehole locations.

Soil descriptions contained in this report and on the Record of Borehole sheets are based on commonly accepted methods of classification employed in geotechnical practice. Classification and identification of soil involves judgement and Golder does not guarantee descriptions as exact, but infers accuracy to the extent that is common in current geotechnical practice.





The method of Soil Classification and Symbols and Terms Used on Records of Boreholes are provided following the text of this report to assist in the interpretation of the borehole logs.

The following is a summary of the subsurface conditions encountered at the site.

# 5.1 Existing Pavement and Subgrade Conditions

Based on the results of the geotechnical investigation, the existing pavement structure and the subgrade conditions along the mainlanes of the road sections within the limits of Section 1 are summarized in the following table.

| BH #  | Surface<br>Treatment<br>(mm) | Granular<br>Base<br>(mm) | Granular<br>Subbase<br>(mm) | Total<br>Thickness<br>(mm) | Granular<br>Base<br>/Subbase<br>Condition | Predominant<br>Subgrade<br>Classification | Subgrade<br>Moisture<br>Condition | Subgrade Frost<br>Susceptibility | Water<br>Level<br>(m) |
|-------|------------------------------|--------------------------|-----------------------------|----------------------------|-------------------------------------------|-------------------------------------------|-----------------------------------|----------------------------------|-----------------------|
| BH101 | 110*                         | 130                      | 210                         | 450                        | -                                         | SM to ML                                  | Moist to Wet                      | Medium to High                   | 2.0                   |
| BH102 | 30                           | 70                       | 510                         | 610                        | Unacceptable                              | SM to CL                                  | Moist                             | Low                              | 4.0                   |
| BH103 | 25                           | 75                       | 900                         | 1000                       | -                                         | CL                                        | Moist                             | Low                              | 1.4                   |
| BH104 | 25                           | 125                      | 380                         | 530                        | -                                         | CL-ML                                     | Moist                             | Medium                           | 6.2                   |
| BH105 | 30                           | 120                      | 420                         | 570                        | -                                         | CL                                        | Moist                             | Low                              | -                     |
| BH106 | 30                           | 120                      | 340                         | 490                        | -                                         | ML/SM                                     | Moist                             | Low                              | 3.7                   |
| BH107 | 30                           | 240                      | 430                         | 700                        | -                                         | ML/SM                                     | Moist                             | Low                              | -                     |
| BH108 | 25                           | 125                      | 260                         | 410                        | Unacceptable                              | ML/SM                                     | Moist                             | Low                              | -                     |

\*Asphalt was encountered in the borehole advanced at this location

The topsoil and organic material thickness measurements and the subgrade soil conditions within the proposed widening areas of Section 1 are summarized in the following table.

| BH #                                                                                                                                                                                                                                                                                                          | Topsoil/<br>Organic<br>Material<br>Thickness<br>(mm) | Predominant<br>Subgrade<br>Classification | Subgrade<br>Moisture<br>Condition | Subgrade Frost<br>Susceptibility | Water Level<br>(m)                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------|-----------------------------------|----------------------------------|------------------------------------------------------|
| BH201 22+200 9.0 Lt of C/L<br>BH202 22+600 7.5 Lt of C/L<br>BH203 22+600 9.5 Rt of C/L<br>BH204 23+142 8.0 Lt of C/L<br>BH205 23+400 17.0 Lt of C/L<br>BH206 23+400 18.0 Rt of C/L<br>BH207 23+800 10.0 Rt of C/L<br>BH208 24+300 8.80 Lt of C/L<br>BH209 24+800 10.0 Lt of C/L<br>BH210 25+300 7.8 Rt of C/L | 290-600<br>Avg. 420                                  | ML<br>ML/SM                               | Moist to Wet                      | HSFH<br>LSFH                     | Encountered<br>at surface to<br>below 1.0 m<br>depth |

Highly frost susceptible soils were encountered in BH101 and BH201. Frost susceptible material, where encountered, should be excavated to the frost penetration depth (1.5 m) and backfilled with suitable earth borrow or Granular B, Type I material.





Based on the results of the geotechnical investigation, the existing pavement structure and the subgrade conditions on the mainlanes of the road sections within the limits of Section 2 are summarized in the following table.

| BH #  | Asphalt or<br>Surface<br>Treatment<br>(mm) | Granular<br>Base<br>(mm) | Granular<br>Subbase<br>(mm) | Total<br>Thickness<br>(mm) | Granular<br>Base<br>/Subbase<br>Condition | Predominant<br>Subgrade<br>Classification | Subgrade<br>Moisture<br>Condition | Subgrade Frost<br>Susceptibility | Water<br>Level<br>(m) |
|-------|--------------------------------------------|--------------------------|-----------------------------|----------------------------|-------------------------------------------|-------------------------------------------|-----------------------------------|----------------------------------|-----------------------|
| BH301 | 25                                         | 385                      | 260                         | 670                        | -                                         | CL-ML                                     | Moist                             | Medium                           | -                     |
| BH302 | 25                                         | 295                      | 320                         | 640                        | Unacceptable                              | CL-ML                                     | Moist                             | Medium                           | -                     |
| BH303 | 25                                         | 275                      | 370                         | 670                        | -                                         | CL-ML                                     | Moist                             | Medium                           | -                     |
| BH304 | 25                                         | 210                      | 300                         | 560                        | -                                         | CL-ML                                     | Moist                             | Medium                           | -                     |
| BH305 | 25                                         | 175                      | 700                         | 900                        | -                                         | ML/SM                                     | Wet                               | Low                              | 0.9                   |
| BH306 | 25                                         | 225                      | 225                         | 590                        | -                                         | SM                                        | Moist                             | Low                              | -                     |
| BH307 | 25                                         | 425                      | 450                         | 900                        | -                                         | CL-ML                                     | Moist                             | Medium                           | -                     |
| BH308 | 25                                         | 315                      | 330                         | 670                        | Unacceptable                              | SW                                        | Moist to Sat.                     | Low                              | 1.1                   |
| BH309 | 25                                         | 275                      | 350                         | 650                        | -                                         | SM                                        | Moist to Sat.                     | Low to Medium                    | 1.2                   |
| BH310 | 80*                                        | 160                      | 220                         | 460                        | -                                         | SM                                        | Moist                             | Low                              | -                     |
| BH311 | 25                                         | 95                       | 440                         | 560                        | -                                         | SM                                        | Moist                             | Low                              | -                     |
| BH312 | 180*                                       | 120                      | 160                         | 460                        | -                                         | SM                                        | Moist                             | Low                              | -                     |

\*Asphalt was encountered in the borehole advanced at this location

The results of the gradation tests carried out on selected granular base samples indicated that the granular samples tested did not meet the OPSS 1010 requirements for Granular A Type I due to the grading being too fine on multiple sieves.

The results of the gradation tests carried out on selected granular subbase samples indicated that the granular samples tested did not meet the OPSS 1010 requirements for Granular B, Type I due to excessive fines.

Grain size distribution curves for two granular base and two granular subbase samples are shown on Figures B1 and B2, respectively in Appendix B.

The results of particle size analysis of five subgrade samples are shown on Figures B3 to B6, in Appendix B.

#### 5.1.1 Buried Asphaltic Material

A buried layer of surface treatment, approximately 25 to 30 mm in thickness was encountered within the granular base material in Boreholes BH301, BH302 and BH303. In Boreholes BH307, BH308, and BH309, a layer of Recycled Asphalt Pavement (RAP) approximately 125 to 155 mm in thickness was encountered underlying the surface treatment and above the granular base material. In the summary table in Section 5.1, both the buried surface treatment and RAP thicknesses have been included as part of the granular base layer for pavement design analysis purposes. Refer to the Record of Pavement Boreholes in Table 1 and Table 2 for detailed pavement structure information.

#### 5.1.2 Organic Material

Organic material was encountered directly underlying the pavement structure and overlying the native subgrade soils in Boreholes BH305, BH307, and BH308. The organic material was generally characterized as moist and loose, and saturated below the groundwater table. Where encountered beneath the pavement structure the organic material ranged from approximately 280 to 300 mm in thickness.



# 5.2 Subsoil Conditions for Service Installations

Boreholes BH101 to BH108 were advanced to depths ranging from 4.6 m to 8.0 m below the existing road surface. The subsurface soil conditions encountered below the pavement structure and shallow fill materials in the above noted boreholes generally consisted of deposits of glacial tills, ranging in gradation from sandy silty clay till to silt and sand till. A non-cohesive layer of silt was encountered in BH101. Fill materials were encountered below the granular materials in BH101 to BH104, BH106 and 107, and extended to depths ranging from approximately 1.4 m to 5.6 m below the existing road surface. The subgrade soils within the drilling depth (up to about 8 m) and the physical characteristics of each stratum are summarized in the following table:

| Subsoil<br>Stratum      | Boreholes                                                                      | Depth (m) below Ground<br>Surface                                                                                              | "N" Values<br>(blows/0.3 m<br>Penetration) | Consistency<br>/ Relative<br>Density | Water<br>Content<br>(%) | Comments                                                                                                                                                                 |
|-------------------------|--------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fill<br>Materials       | BH101<br>BH102<br>BH103<br>BH104<br>BH106<br>BH107                             | Encountered below the<br>pavement granulars and<br>extended to depths ranging<br>from 1.4 m to 5.6 m                           | 14 to greater<br>than 100                  | Compact to<br>very dense             | 7 to 25                 | - Some organic material<br>encountered within fill in BH106<br>from 0.5 to 1.4 below the<br>pavement surface and BH107 from<br>0.7 to 1.4 below the pavement<br>surface. |
| (ML) Silt               | It BH101 Encountered below Fill<br>Materials and extended to<br>depth of 5.0 m |                                                                                                                                | 24 to 48                                   | Compact to dense                     | 15 to 26                |                                                                                                                                                                          |
| (CL) Silty<br>Clay      | BH102<br>BH103<br>BH105                                                        | Encountered below Fill<br>Materials and extended to<br>depth of 2.1 m                                                          | 15 to 28                                   | Stiff to very<br>stiff               | 14 to 24                |                                                                                                                                                                          |
| (CL) Silty<br>Clay Till | BH102<br>BH103                                                                 | Encountered below Fill<br>Materials or Silty Clay and<br>extended to depth of 2.9 m                                            | 39 to 44                                   | Hard                                 | 11 to 23                |                                                                                                                                                                          |
| (ML/SM)Silt<br>and Sand | BH102<br>BH103<br>BH104<br>BH105<br>BH106<br>BH107<br>BH108                    | Encountered below Fill<br>Materials, Silty Clay or Silty<br>Clay Till and extended to<br>depths ranging from 4.7 m<br>to 8.0 m | 40 to greater<br>than 100                  | Dense to very<br>dense               | 4 to 16                 |                                                                                                                                                                          |

# 5.3 Shallow Groundwater

Groundwater was encountered in Boreholes BH101, BH102, BH103, BH106, BH304, BH305, and BH309 during drilling, at depths ranging from 0.9 to 4.0 m below ground surface. Boreholes BH104, BH105, BH107 BH108, BH301 to BH303, BH306, BH307, and BH310 to BH312 were dry upon completion of drilling. The groundwater level within the piezometer installed in BH104 was dry upon completion of installation; but subsequently on April 28, 2015, the water level was measured at a depth of 6.2 m below ground surface. The stabilized groundwater level measured in the piezometer installed in BH103 was 1.4 m below ground surface on April 28, 2015.

It should be noted that these observations reflect the shallow groundwater conditions encountered in the boreholes during the time of the field investigation and the measurements recorded on April 28, 2015. Seasonal fluctuations should be anticipated throughout the project limits.



# 6.0 DISCUSSION AND RECOMMENDATIONS

This section of the report provides engineering information for the factual geotechnical and pavement design aspects of the project, based on our interpretation of the borehole data, the results of our visual pavement evaluation and on our understanding of the project requirements. The information in this portion of the report is provided for the guidance of the design engineers. Where comments are made on construction, they are provided only in order to highlight aspects of construction which could affect the design of the project.

Our professional services for this assignment address only the geotechnical (physical) aspects of the subsurface conditions at this site. The geo-environmental (chemical) aspects, including the consequences of possible surface and/or subsurface contamination resulting from previous activities or uses of the site and/or resulting from the introduction onto the site of materials from off-site sources, are outside the terms of reference for this report and have not been investigated or addressed.

### 6.1 **Pavement Design and Recommendations**

The pavement design and analysis was carried out in accordance with the "1993 AASHTO Guide for Design of *Pavement Structure*" and the 'Innisfil's Engineering Design Standards and Specifications Manual" (Town's Standards). Details of the pavement design and analysis are provided in Tables C1 to C6, Appendix C.

### 6.1.1 Traffic Loading and Pavement Structural Analysis

Traffic load calculations were carried out in accordance with the Ministry of Transportation Report "Procedures for Estimating Traffic Loads for Pavement Design, 1995". Traffic data for this section of 6<sup>th</sup> Line from the 20<sup>th</sup> Sideroad to St. John's Road provided by HDR in an email dated March 23, 2015 are summarized in the following table.

| Location  | From                      | То                        | 2015<br>AADT | 2015<br>%COMM | 2031<br>AADT | 2031<br>%COMM | Annual Rate<br>of Increase | Town of Innisfil<br>Road<br>Classification |
|-----------|---------------------------|---------------------------|--------------|---------------|--------------|---------------|----------------------------|--------------------------------------------|
| Section 1 | 20 <sup>th</sup> Sideroad | St. John's<br>Road        | 800          | 4%            | 17,100       | 5%            | 17%                        | Major Collector                            |
| Section 2 | County Road 27            | 20 <sup>th</sup> Sideroad | 300          | 3%            | 11,300       | 5%            | 21%                        | Major Arterial                             |

Based on the road classification and the results of the geotechnical investigation, the design parameters selected for the AASHTO design analysis are presented in following table.

| Decian Considerations                                   | Parameters Selected for<br>Pavement Design                                            | Parameters Selected for<br>Pavement Design                                           |
|---------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Design Considerations                                   | Section 1 - 6 <sup>th</sup> Line From 20 <sup>th</sup><br>Sideroad to St. John's Road | Section 2 - 6 <sup>th</sup> Line from County<br>Road 27 to 20 <sup>th</sup> Sideroad |
| Road Classification                                     | Urban Minor Arterial<br>(Equivalent MTO classification)                               | Urban Principal Arterial<br>(Equivalent MTO classification)                          |
| Initial Serviceability Index                            | 4.4                                                                                   | 4.5                                                                                  |
| Terminal Serviceability Index                           | 2.2                                                                                   | 2.5                                                                                  |
| Reliability (%)                                         | 85                                                                                    | 90                                                                                   |
| Standard Deviation                                      | 0.49                                                                                  | 0.49                                                                                 |
| Estimated Resilient Modulus for<br>Subgrade Soils (MPa) | 25                                                                                    | 25                                                                                   |





The Equivalent Single Axle Loads (ESALs) were calculated for a 20 year design life for the proposed reconstruction and widening. Based on the traffic data, the design life, and the parameters selected, the estimated ESALs, the associated required Structural Number (SN) and the existing pavement SN are summarized in the following table.

| Road                                                                      | ESALs                 | Required SN<br>(mm) | Existing Pavement SN<br>(mm) | Structural Deficiency in SN<br>(mm) |
|---------------------------------------------------------------------------|-----------------------|---------------------|------------------------------|-------------------------------------|
| 6 <sup>th</sup> Line from 20 <sup>th</sup> Sideroad<br>to St. John's Road | 1.9 X 10 <sup>6</sup> | 117                 | 30                           | 87                                  |
| 6 <sup>th</sup> Line from County Rod<br>27 to St. John's Road             | 1.7 X 10 <sup>6</sup> | 125                 | 34                           | 91                                  |

Based on the results of the investigation and laboratory testing, the existing pavement on the 6<sup>th</sup> Line is significantly structurally deficient to carry future traffic.

In Section 1, it is understood that grades will be adjusted. As such, we have included an option that incorporates a grade raise as well as a full depth reconstruction option for Section 1. Based on the traffic load and pavement structural analysis, the following reconstruction/widening strategy is recommended for 6<sup>th</sup> Line between St. John's Road and the 20<sup>th</sup> Sideroad:

#### Option 1 - Grade raise greater than 440 mm

Remove the existing surface treatment to provide for:

- 40 mm HL-3 Surface course
- 100 mm HL-8 Binder course (in two 50 mm lifts)
- 300 mm Granular A, Base

#### Option 2 - Full Depth Reconstruction and Grade Raise Less than 440 mm

- 40 mm HL-3 Surface course
- 100 mm HL-8 Binder course (in two 50 mm lifts)
- 150 mm Granular A, Base
- 450 mm Granular B, Type I, Subbase (minimum)

The reconstructed road will have a Structural Number of 120 mm which exceeds the requirement of 117 mm. The thickness of pavement structure layers also satisfies the minimum requirements of the Town's Standards. The thicknesses of the surface and binder courses have been adjusted slightly to satisfy the minimum lift thickness for each type of asphalt mix.

In Section 2, it is understood that grades could be adjusted, but there will be additional costs to reinstate entrances. As such, we have included an option that incorporates a grade raise as well as a full depth reconstruction option for Section 2. Based on the traffic load and pavement structural analysis, the following reconstruction strategies are recommended:





#### Option 1 - Grade Raise of ~440 mm

Remove the existing surface treatment to provide for:

- 40 mm HL-3 Surface course
- 100 mm HL-8 Binder course (in two 50 mm lifts)
- 300 mm Granular A, Base

#### Option 2 - Full Depth Reconstruction

- 40 mm HL-3 Surface course
- 100 mm HL-8 Binder course (in two 50 mm lifts)
- 150 mm Granular A, Base
- 500 mm Granular B, Type I, Subbase (minimum)

We understand that the potential future condition for the 6th Line is the construction of an interchange at the Highway 400 crossing. The increase in traffic volumes would necessitate widening of the 6th Line between County Road 27 and the 20th Sideroad to two lanes in each direction.

#### 6.1.2 Other Design Features and Construction Considerations

The road reconstruction work should be carried out in accordance with OPSD 216.010 and 216.020 and the Town's Standards. Some design features and construction considerations are highlighted below.

#### Stripping of Topsoil/Organic Materials

Topsoil or organic material should be removed completely regardless of depth. Stripping quantities should be estimated based on the average topsoil or organic material depth of 420 mm.

#### Subgrade Preparation

The predominant subgrade material within the footprint of the reconstruction/widening is expected to be silty sand, silty clay, silt materials and acceptable fills in proposed widening areas. If highly frost susceptible silt is encountered when excavating for the pavement structure it should be sub-excavated to the 1.5 m frost depth and replaced with suitable earth borrow or Granular B, Type I. The subgrade should be proof-rolled prior to placement of any granular materials. Loose or soft areas encountered in the subgrade should be excavated and replaced with Granular A material in accordance with the Town's Standards, and compacted to provide a stable uniform subgrade. After proofrolling, grade the subgrade to the desired crossfall and compact any required fill material to a minimum of 95 percent of the material's Standard Proctor Maximum Dry Density (SPMDD). Earth grading should be carried out in accordance with OPSD 200 Series.

The majority of the widening will be over shallow fill. Fill material for this project may be obtained from the removal of the existing roadbed, as well as from offsite sources. Earth borrow material, if required, should consist of approved materials which meet the requirements of OPSS 212. The existing granular base, sandy subbase materials excavated from the existing roadbed can also be used as earth borrow provided that the materials are kept free of contamination by topsoil and other organics. To ensure adequate and uniform support throughout the pavement structure, the placement of borrow material should be carefully controlled. Mixing of materials from different sources that could result in differential settlement, frost heave, or drainage problems



should be avoided. The existing non frost susceptible soils excavated during construction could also be used as earth borrow provided they are free of organics and deleterious materials.

### Granular Materials

Granular A should be used as granular base material and Granular B, Type I should be used as granular subbase material. As an alternative, 20 mm crusher run limestone can be used as granular base material and 50 mm crusher run limestone can be used as granular subbase in this project. All granular materials and placement should be conformed to OPSS.MUNI 1010.

Granular materials used in the road base and subbase shall be placed in layers not exceeding 150 mm and compacted to 100 percent of the material's SPMDD.

Care should be taken during excavation to ensure that the existing and new granular materials are not contaminated by construction traffic.

#### Asphalt Mixes

It is recommended that HL-3 mix can be used as surface course and HL 8 mix can be used as binder course. Alternatively, Superpave hot mix asphalt could be used in place of conventional Marshall type mixes as outlined in the following table. The traffic category and Performance Grade Asphalt Cements (PGAC) of the asphalt mixes for both the Marshall and the Superpave alternatives are listed in the table below.

| Courses        | Marshall HMA Type | Superpave Equivalent | Traffic Category | PGAC Grade |
|----------------|-------------------|----------------------|------------------|------------|
| Surface Course | HL- 3             | SP 12.5              | В                | 58-28      |
| Binder Course  | HL- 8             | SP 19.0              | В                | 58-28      |

Asphalt material and placement requirements should be in accordance with OPSS 310 and OPSS 1150. According to the Town's Standards, use of Superpave mixes must be approved by the Town and the design and placement of Superpave mixes should conform to OPSS.MUNI 1151 and current AASHTO specifications.

The binder course (HL-8 or SP 19.0) should be compacted to at least 91 percent of the material's Maximum Relative Density (MRD), and the surface course (HL-3 or SP 12.5) should be compacted to at least 92 percent of the material's MRD.

#### Drainage

Subdrains should be installed beneath the new curb and gutter area in accordance with OPSD 216.021. The drainage system should consist of a 100 mm diameter, perforated corrugated plastic pipe wrapped in filtercloth, placed inside a trench and surrounded by Granular A, to satisfy the Town's guideline. The trench should be lined with a suitable geotextile prior to placing the Granular A material. At the top of the trench, the geotextile should overlap a minimum of 100 mm.

#### **Pavement Transitions**

Where the new pavement abuts existing pavement at the limits of the project, as well as at the adjacent streets and major driveways, proper transverse joints should be constructed to key the new asphalt into the existing paved surface, in accordance with the Town's Standards.



### Sideroads and Entrances

Paving at existing sideroads intersecting the 6<sup>th</sup> Line should be extended through the intersection to beyond the radii (i.e. St. John's Road, 20<sup>th</sup> Sideroad, Yonge Street, 10<sup>th</sup> Sideroad, 5<sup>th</sup> Sideroad and Country Road 27). Additional investigations should be completed during Detail Design to determine the paving or reconstruction requirements. Paved residential entrances should be reinstated with a 40 mm extension of the surface course. Paved commercial entrances should be reinstated with an extension of both the surface and the upper binder courses (90 mm).

# 6.2 Geotechnical Considerations for Installation of Underground Services

It is understood that the Town will evaluate the need for servicing during Detail Design of the project. The finalized alignments and profiles of the utilities were not provided to us at this time, however, based on a review of current design drawings dated March 2015, and the email received from HDR on May 8, 2015, the minimum cover for the proposed watermain and sewers will range between 1.5 m to 2.8 m below the road surface.

### 6.2.1 Trench Excavations

Based on the information provided by HDR and typical pipe sizes of 300 mm to 900 mm diameter, watermain and sewer installations will require trench excavations approximately 2 m to 4 m in depth below the existing road surface. Based on the results of the geotechnical investigation, the founding soils for the services will be primarily glacial tills ranging in gradations from sandy silty clay till to silt and sand till, silt (in the vicinity of Borehole BH101) and fill materials. The native subsoils (underlying the shallow fills) are considered to be suitable for supporting the pipes, provided the integrity of the base can be maintained during construction. The suitability of the existing fill materials to support the pipes, if encountered at the base of the trench, should be further assessed during construction.

As mentioned in Section 5.3, groundwater was encountered during the drilling investigation in Boreholes BH101 to BH103 and BH106 at depths ranging from about 2.0 m to 4.0 m below ground surface. Further, groundwater levels in the monitoring wells installed in Boreholes BH103 and BH104 were measured at a depth of 1.4 m and 6.2 m below ground surface on April 28, 2015, respectively. Considering the trench excavation depths anticipated (i.e., up to about 4 m in depth), the services will generally be at or below the local groundwater table at most locations.

A Permit to Take Water (PTTW) should be obtained from the Ontario Ministry of Environment and Climate Change (MOECC) for any required dewatering in excess of 50 m<sup>3</sup>/day. A PTTW may be required for the project and should be further examined during Detail Design.

It would be prudent to carry out a "public digging" (i.e., test pitting) during the tender stage, especially within the vicinity of shallow water conditions in Boreholes BH101 and BH103, to allow prospective bidders to assess the subsurface conditions and determine the type of groundwater control required. The responsibility for the design, equipment selection and operation of construction dewatering method for the installation of the servicing should entirely be that of the contractor. Suspended particulate should be removed from all abstracted water from the excavations prior to release to the environment. Additional groundwater level monitoring in the existing piezometers should also be considered to further assess the seasonal fluctuations at the site.





It is anticipated that the majority of the construction of the service installations will be carried out using vertically excavated, unsupported excavations (using a properly engineered trench liner box for protection, certified by an experienced engineer); or by a supported (sheeted) excavation, if conditions warrant, in close proximity to adjacent underground services or structures.

It must be emphasized that a trench liner box provides protection for construction personnel but does not provide any lateral support for adjacent excavation walls, underground services or existing structures. For this reason, it is imperative that underground services and existing structures adjacent to the trench excavations be accurately located prior to construction and adequate support provided where required, as per the Town's Standards.

Where trench boxes are utilized, it is anticipated that in the fill materials and non-cohesive silty/sandy soils, the unsupported soils on the trench sides will relax, filling the void between the trench walls and trench box. This may lead to loss of ground below the pavement and potentially undermine and reduce the stability of the pavement structure adjacent to open traffic lanes. To minimize this effect, the gap between the trench walls and trench box should be minimized during the excavation and trench box installation.

Where excavations are conducted by conventional temporary open cuts, side slopes should not be steeper than 1 horizontal to 1 vertical. However, depending upon the construction procedures adopted by the contractor, actual groundwater seepage conditions, the contractor's groundwater control methods and weather conditions at the time of construction, some flattening and/or blanketing of the slopes may be required. Care should be taken to direct surface water runoff away from the open excavations and all excavations should be carried out in accordance with the Occupational Health and Safety Act and Regulations for Construction Projects. According to OHSA, the shallow fill materials and native soils below the ground water table would be classified as Type 3 soils. Native soils above the groundwater table would be classified Type 2 soils. The native silt material in the vicinity of Borehole BH103 would be classified under OHSA as Type 3 soil above the water table as well as below.

Some difficulty may be encountered in excavating the dense/hard tills at some locations. Although, not observed directly, cobbles and boulders are inferred to exist within the till and fill material within the vicinity of Borehole BH104, BH107, and BH108, based on observations of auger grinding and auger refusal during the drilling investigation.

### 6.2.2 Pipe Bedding and Cover

The bedding for the underground services should be compatible with the type and class of pipe, the surrounding subsoil and anticipated loading conditions and should be designed in accordance with the Town's Standards. Where granular bedding is deemed to be acceptable, it should consist of at least 150 mm of OPSS Granular A or sand material. Clear stone bedding material should <u>not</u> be used in any case for pipe bedding or to stabilize the base. From the springline to 300 mm above the obvert of the pipe, sand cover may be used. All bedding and cover materials should be placed in maximum 150 mm loose lifts and should be uniformly compacted to at least 95 percent of the material's SPMDD.



### 6.2.3 Trench Backfill

The majority of the excavated materials from the site will consist of glacial till materials and some silty/sandy/clayey fill materials. The majority of the fills and native soils anticipated to be reused as trench backfill are generally near their estimated optimum water contents for compaction. The moderate to highly frost susceptible silty soils should not be used a backfill within the frost depth.

The excavated soils at suitable water contents may be reused as trench backfill provided they are free of significant amounts of topsoil, organics or other deleterious material, and are placed and compacted as outlined below. It should be noted that due to the predominantly fine-grained nature of the majority of the native subsoils, some difficulty would be expected in achieving adequate compaction during wet weather. All topsoil and organic materials should be wasted or used for landscaping purposes, as appropriate. All oversized cobbles and boulders (i.e., greater than 150 mm in size) should be removed from the backfill.

All trench backfill, from the top of the cover material to subgrade elevation, should be placed in maximum 300 mm loose lifts and uniformly compacted to at least 95 percent of the material's SPMDD. From 1 m below subgrade to subgrade elevation, the materials should be placed in maximum 150 mm loose lifts and uniformly compacted to at least 98 percent of SPMDD.

Alternatively, if placement water contents at the time of construction are too high and there is insufficient space and/or time available to adequately dry the trench backfill material, or if there is a shortage of suitable in-situ material, then an approved imported granular material which meets the requirements for OPSS Select Subgrade Material (SSM) could be used. It should be placed in loose lift thicknesses as indicated above and uniformly compacted to at least 95 percent of SPMDD. Backfilling operations during cold weather should avoid inclusions of frozen lumps of material, snow and ice.

### 7.0 CLOSURE

This report is intended to summarize the subsurface soil and groundwater conditions and provide factual geotechnical data and preliminary pavement engineering recommendations as input to the reconstruction/widening of 6<sup>th</sup> Line from County Road 27 to St. John's Road. It is recommended that Golder be given the opportunity to review the geotechnical aspects of the final design to confirm that the intent of this report has been met.

We trust this report satisfies your current requirements. Please do not hesitate to contact this office if you have any questions.





### **GEOTECHNICAL AND PAVEMENT DESIGN REPORT**

# **Report Signature Page**

GOLDER ASSOCIATES LTD.

John B. Hagan, P.Eng. Geotechnical/Pavement Engineer

Stop PROFESSION AL 100 RO

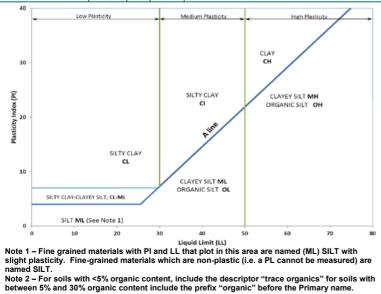
Anden C Relaid

Andrew C. Balasundaram, P.Eng. Principal, Pavement and Materials Engineer

Darrin Sellick, C.Tech. Associate, Senior Geotechnical Technologist

JBH/ACB/kg/pb/leb

Golder, Golder Associates and the GA globe design are trademarks of Golder Associates Corporation.


n:\active\\_2014\1181- geotechnical & pavement\14-13283 town of innisfill - 6th class ea\pavement geotech\\_final report for town\14-13283 final rep 2015'11'12 6th line innisfil.docx





### METHOD OF SOIL CLASSIFICATION

| Organic<br>or<br>Inorganic                                         | Soil<br>Group                                                  | Туре                                                                                            | of Soil                                                                                      | Gradation<br>or Plasticity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cu                   | $u = \frac{D_{60}}{D_{10}}$ |                    | $Cc = \frac{(D)}{D_{10}}$ | $\frac{(30)^2}{xD_{60}}$           | Organic<br>Content | USCS Group<br>Symbol | Group Name             |     |    |
|--------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------|--------------------|---------------------------|------------------------------------|--------------------|----------------------|------------------------|-----|----|
|                                                                    |                                                                | of<br>is<br>1m)                                                                                 | Gravels<br>with                                                                              | Poorly<br>Graded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      | <4                          |                    | ≤1 or ≩                   | ≥3                                 |                    | GP                   | GRAVEL                 |     |    |
| (ss                                                                | 5 mm)                                                          | GRAVELS<br>(>50% by mass of<br>coarse fraction is<br>larger than 4.75 mm)                       | ≤12%<br>fines<br>(by mass)                                                                   | Well Graded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      | ≥4                          |                    | 1 to 3                    | 3                                  |                    | GW                   | GRAVEL                 |     |    |
| by mas                                                             | SOILS                                                          | GRAVELS<br>60% by mass<br>arse fractior<br>er than 4.75                                         | Gravels<br>with                                                                              | Below A<br>Line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                             | n/a                |                           |                                    |                    | GM                   | SILTY<br>GRAVEL        |     |    |
| INORGANIC<br>(Organic Content ≤30% by mass)                        | COARSE-GRAINED SOILS<br>(>50% by mass is larger than 0.075 mm) | large (>5                                                                                       | >12%<br>fines<br>(by mass)                                                                   | Above A<br>Line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                             | n/a                |                           |                                    |                    | GC                   | CLAYEY<br>GRAVEL       |     |    |
| NORG                                                               | E-GRA<br>is is lar                                             | مر<br>m)                                                                                        | Sands<br>with                                                                                | Poorly<br>Graded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      | <6                          |                    | ≤1 or :                   | ≥3                                 | ≤30%               | SP                   | SAND                   |     |    |
| Janic C                                                            | COARS<br>by mas                                                | SANDS<br>(≥50% by mass of<br>coarse fraction is<br>smaller than 4.75 mm)                        | ≤12%<br>fines<br>(by mass)                                                                   | Well Graded                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      | ≥6                          |                    | 1 to 3                    | 3                                  |                    | SW                   | SAND                   |     |    |
| (Orç                                                               | -50%                                                           | SANDS<br>0% by ma<br>arse fractio                                                               | Sands<br>with                                                                                | Below A<br>Line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                             | n/a                |                           |                                    |                    | SM                   | SILTY SAN              |     |    |
| Ŭ                                                                  | Ŭ                                                              | (≥5<br>co<br>small                                                                              | >12%<br>fines<br>(by mass)                                                                   | Above A<br>Line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                             | n/a                |                           |                                    |                    | SC                   | CLAYEY<br>SAND         |     |    |
| Organic                                                            |                                                                |                                                                                                 |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Field Indicators     |                             |                    |                           |                                    |                    |                      |                        |     |    |
| norganic                                                           | Soil<br>Group                                                  | Туре                                                                                            | of Soil                                                                                      | Laboratory<br>Tests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dilatancy            | Dry<br>Strength             | Shine<br>Test      | Thread<br>Diameter        | Toughness<br>(of 3 mm<br>thread)   | Organic<br>Content | USCS Group<br>Symbol | Primary<br>Name        |     |    |
|                                                                    |                                                                | LL plot                                                                                         | <u>.</u>                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Rapid                | None                        | None               | >6 mm                     | N/A (can't<br>roll 3 mm<br>thread) | <5%                | ML                   | SILT                   |     |    |
| (s                                                                 | 5 mm)                                                          | and LL                                                                                          | SILTS<br>SILTS<br>(Non-Plastic or Pl and LL<br>below A-Line<br>on Plasticity<br>Chart below) | tiquid binpid<br>000 A-Line<br>010 | Slow                 | None to<br>Low              | Dull               | 3mm to<br>6 mm            | None to low                        | <5%                | ML                   | CLAYEY SIL             |     |    |
| INORGANIC<br>(Organic Content ≤30% by mass)                        | olLS<br>an 0.07                                                | (250% by mass is smaller than 0.075 mm)<br>CLAYS SILTS<br>and LL plot (Non-Plastic or Pl and LL |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Slow to<br>very slow | Low to<br>medium            | Dull to slight     | 3mm to<br>6 mm            | Low                                | 5% to<br>30%       | OL                   | ORGANIC<br>SILT        |     |    |
| ANIC<br>≤30%                                                       | -INEGRAINED SOILS<br>mass is smaller than 0                    |                                                                                                 | -Plasti<br>bel<br>on<br>Ché                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Chế đ                | Plasti<br>bek<br>on<br>Ch   | Liguid Limit       | Slow to<br>very slow      | Low to<br>medium                   | Slight             | 3mm to<br>6 mm       | Low to<br>medium       | <5% | МН |
| INORGANIC<br>≥ontent ≤30%                                          | GRAIN<br>s is sma                                              | NoN)                                                                                            |                                                                                              | ≥50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | None                 | Medium<br>to high           | Dull to slight     | 1 mm to<br>3 mm           | Medium to<br>high                  | 5% to<br>30%       | ОН                   | ORGANIC<br>SILT        |     |    |
| Janic O                                                            | FINE-<br>y mass                                                | lot                                                                                             | art                                                                                          | Liquid Limit<br><30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | None                 | Low to<br>medium            | Slight<br>to shiny | ~ 3 mm                    | Low to<br>medium                   | 0%                 | CL                   | SILTY CLA              |     |    |
| (Org                                                               | 50% b                                                          | CLAYS<br>and LL p                                                                               | A-Line<br>city Ch<br>elow)                                                                   | Liquid Limit<br>30 to 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | None                 | Medium<br>to high           | Slight<br>to shiny | 1 mm to<br>3 mm           | Medium                             | to<br>30%          | CI                   | SILTY CLA              |     |    |
|                                                                    | ₹)                                                             | CI<br>(Pl ar                                                                                    | above A-Line on<br>Plasticity Chart<br>below)                                                | Liquid Limit<br>≥50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | None                 | High                        | Shiny              | <1 mm                     | High                               | (see<br>Note 2)    | СН                   | CLAY                   |     |    |
| HIGHLY<br>ORGANIC<br>SOILS<br>(Organic<br>Content >30%<br>by mass) |                                                                | Peat and                                                                                        | mineral soil<br>tures                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | I                    | 1                           | 1                  | 1                         | 1                                  | 30%<br>to<br>75%   |                      | SILTY PEA<br>SANDY PEA |     |    |
|                                                                    |                                                                | may con                                                                                         | antly peat,<br>tain some<br>il, fibrous or                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                             |                    |                           |                                    | 75%<br>to<br>100%  | PT                   | PEAT                   |     |    |



**Dual Symbol** — A dual symbol is two symbols separated by a hyphen, for example, GP-GM, SW-SC and CL-ML.

For non-cohesive soils, the dual symbols must be used when the soil has between 5% and 12% fines (i.e. to identify transitional material between "clean" and "dirty" sand or gravel.

For cohesive soils, the dual symbol must be used when the liquid limit and plasticity index values plot in the CL-ML area of the plasticity chart (see Plasticity Chart at left).

**Borderline Symbol** — A borderline symbol is two symbols separated by a slash, for example, CL/CI, GM/SM, CL/ML. A borderline symbol should be used to indicate that the soil has been identified as having properties that are on the transition between similar materials. In addition, a borderline symbol may be used to er indicates a range of similar soil types within a stratum.





#### ABBREVIATIONS AND TERMS USED ON RECORDS OF **BOREHOLES AND TEST PITS**

 $\mathsf{D}_\mathsf{R}$ 

DS

GS

Μ

MH

MPC

SPC

OC

SO<sub>4</sub>

UC

UU

V (FV)

#### PARTICLE SIZES OF CONSTITUENTS

| Soil<br>Constituent | Particle Size<br>Description | Millimetres                                     | Inches<br>(US Std. Sieve Size)               |  |  |  |  |  |  |
|---------------------|------------------------------|-------------------------------------------------|----------------------------------------------|--|--|--|--|--|--|
| BOULDERS            | Not<br>Applicable            | >300                                            | >12                                          |  |  |  |  |  |  |
| COBBLES             | Not<br>Applicable            | 75 to 300                                       | 3 to 12                                      |  |  |  |  |  |  |
| GRAVEL              | Coarse<br>Fine               | 19 to 75<br>4.75 to 19                          | 0.75 to 3<br>(4) to 0.75                     |  |  |  |  |  |  |
| SAND                | Coarse<br>Medium<br>Fine     | 2.00 to 4.75<br>0.425 to 2.00<br>0.075 to 0.425 | (10) to (4)<br>(40) to (10)<br>(200) to (40) |  |  |  |  |  |  |
| SILT/CLAY           | Classified by<br>plasticity  | <0.075                                          | < (200)                                      |  |  |  |  |  |  |

#### MODIFIERS FOR SECONDARY AND MINOR CONSTITUENTS

| Percentage<br>by Mass | Modifier                                                                                   |
|-----------------------|--------------------------------------------------------------------------------------------|
| >35                   | Use 'and' to combine major constituents<br>( <i>i.e.</i> , SAND and GRAVEL, SAND and CLAY) |
| > 12 to 35            | Primary soil name prefixed with "gravelly, sandy, SILTY, CLAYEY" as applicable             |
| > 5 to 12             | some                                                                                       |
| ≤ 5                   | trace                                                                                      |

#### PENETRATION RESISTANCE

#### Standard Penetration Resistance (SPT), N:

The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) required to drive a 50 mm (2 in.) split-spoon sampler for a distance of 300 mm (12 in.).

#### **Cone Penetration Test (CPT)**

An electronic cone penetrometer with a 60° conical tip and a project end area of 10 cm<sup>2</sup> pushed through ground at a penetration rate of 2 cm/s. Measurements of tip resistance (qt), porewater pressure (u) and sleeve frictions are recorded electronically at 25 mm penetration intervals.

#### Dynamic Cone Penetration Resistance (DCPT); Nd:

The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) to drive uncased a 50 mm (2 in.) diameter, 60° cone attached to "A" size drill rods for a distance of 300 mm (12 in.).

- Sampler advanced by hydraulic pressure PH:
- PM: Sampler advanced by manual pressure
- WH: Sampler advanced by static weight of hammer
- WR: Sampler advanced by weight of sampler and rod

| NON-COHE | ESIVE (C | OHES | ONLES | S) SOILS |
|----------|----------|------|-------|----------|
|          | -        |      | 2     |          |

| Compa                                                 | ctness <sup>2</sup>                                                                                                 |         |
|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------|
| Term                                                  | SPT 'N' (blows/0.3m) <sup>1</sup>                                                                                   |         |
| Very Loose                                            | 0 - 4                                                                                                               |         |
| Loose                                                 | 4 to 10                                                                                                             |         |
| Compact                                               | 10 to 30                                                                                                            |         |
| Dense                                                 | 30 to 50                                                                                                            |         |
| Very Dense                                            | >50                                                                                                                 |         |
| pressure effects.<br>2. Definition of compactness des | ASTM D1586, uncorrected for over<br>scriptions based on SPT 'N' rang<br>orrespond to typical average $N_{60}$ value | es from |

|       | Field Moisture Condition                                      |
|-------|---------------------------------------------------------------|
| Term  | Description                                                   |
| Dry   | Soil flows freely through fingers.                            |
| Moist | Soils are darker than in the dry condition and may feel cool. |
| Wet   | As moist, but with free water forming on hands when handled.  |

| SAMPLES            |                                                                |
|--------------------|----------------------------------------------------------------|
| AS                 | Auger sample                                                   |
| BS                 | Block sample                                                   |
| CS                 | Chunk sample                                                   |
| DO or DP           | Seamless open ended, driven or pushed tube sampler – note size |
| DS                 | Denison type sample                                            |
| FS                 | Foil sample                                                    |
| RC                 | Rock core                                                      |
| SC                 | Soil core                                                      |
| SS                 | Split spoon sampler – note size                                |
| ST                 | Slotted tube                                                   |
| ТО                 | Thin-walled, open – note size                                  |
| TP                 | Thin-walled, piston – note size                                |
| WS                 | Wash sample                                                    |
| SOIL TESTS         |                                                                |
| w                  | water content                                                  |
| PL, w <sub>p</sub> | plastic limit                                                  |
| LL, w <sub>L</sub> | liquid limit                                                   |
| С                  | consolidation (oedometer) test                                 |
| CHEM               | chemical analysis (refer to text)                              |
| CID                | consolidated isotropically drained triaxial test <sup>1</sup>  |
| CIU                | consolidated isotropically undrained triaxial test with        |

porewater pressure measurement<sup>1</sup>

sieve analysis for particle size

Modified Proctor compaction test

Standard Proctor compaction test

unconfined compression test

direct shear test

specific gravity

organic content test

relative density (specific gravity, Gs)

combined sieve and hydrometer (H) analysis

unit weight γ 1. Tests which are anisotropically consolidated prior to shear are shown as CAD, CAU.

concentration of water-soluble sulphates

unconsolidated undrained triaxial test

field vane (LV-laboratory vane test)

#### COHESIVE SOILS

|            | Consistency                       |                                      |
|------------|-----------------------------------|--------------------------------------|
| Term       | Undrained Shear<br>Strength (kPa) | SPT 'N' <sup>1</sup><br>(blows/0.3m) |
| Very Soft  | <12                               | 0 to 2                               |
| Soft       | 12 to 25                          | 2 to 4                               |
| Firm       | 25 to 50                          | 4 to 8                               |
| Stiff      | 50 to 100                         | 8 to 15                              |
| Very Stiff | 100 to 200                        | 15 to 30                             |
| Hard       | >200                              | >30                                  |

SPT 'N' in accordance with ASTM D1586, uncorrected for overburden pressure 1 effects: approximate only.

|        | Water Content                                              |
|--------|------------------------------------------------------------|
| Term   | Description                                                |
| w < PL | Material is estimated to be drier than the Plastic Limit.  |
| w ~ PL | Material is estimated to be close to the Plastic Limit.    |
| w > PL | Material is estimated to be wetter than the Plastic Limit. |





Unless otherwise stated, the symbols employed in the report are as follows:

| I.                                              | GENERAL                                                                                                                                                                                                                                                                                                                                                                                             | (a)<br>w                                                                                                                                                                             | Index Properties (continued)<br>water content                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| π<br>In x<br>log <sub>10</sub><br>g<br>t        | 3.1416<br>natural logarithm of x<br>x or log x, logarithm of x to base 10<br>acceleration due to gravity<br>time                                                                                                                                                                                                                                                                                    | w <sub>i</sub> or LL<br>w <sub>p</sub> or PL<br>I <sub>p</sub> or PI<br>W <sub>s</sub><br>I <sub>L</sub><br>I <sub>C</sub><br>e <sub>max</sub><br>E <sub>min</sub><br>I <sub>D</sub> | liquid limit<br>plastic limit<br>plasticity index = $(w_l - w_p)$<br>shrinkage limit<br>liquidity index = $(w - w_p) / I_p$<br>consistency index = $(w_l - w) / I_p$<br>void ratio in loosest state<br>void ratio in densest state<br>density index = $(e_{max} - e) / (e_{max} - e_{min})$                                                                                                                                                                                           |
| II.                                             | STRESS AND STRAIN                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                      | (formerly relative density)                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| γ<br>Δ<br>ε<br>εν<br>η<br>υ<br>σ<br>σ<br>σ΄σ΄γο | shear strain<br>change in, e.g. in stress: $\Delta \sigma$<br>linear strain<br>volumetric strain<br>coefficient of viscosity<br>Poisson's ratio<br>total stress<br>effective stress ( $\sigma' = \sigma - u$ )<br>initial effective overburden stress                                                                                                                                               | ( <b>b)</b><br>h<br>q<br>v<br>i<br>k                                                                                                                                                 | Hydraulic Properties<br>hydraulic head or potential<br>rate of flow<br>velocity of flow<br>hydraulic gradient<br>hydraulic conductivity<br>(coefficient of permeability)<br>seepage force per unit volume                                                                                                                                                                                                                                                                             |
|                                                 | principal stress (major, intermediate, minor)                                                                                                                                                                                                                                                                                                                                                       | ( <b>c)</b><br>C <sub>c</sub>                                                                                                                                                        | Consolidation (one-dimensional)<br>compression index                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| σ <sub>oct</sub><br>τ<br>u<br>E<br>G            | mean stress or octahedral stress<br>= $(\sigma_1 + \sigma_2 + \sigma_3)/3$<br>shear stress<br>porewater pressure<br>modulus of deformation<br>shear modulus of deformation                                                                                                                                                                                                                          | C <sub>r</sub><br>Cs<br>Cα<br>mv                                                                                                                                                     | (normally consolidated range)<br>recompression index<br>(over-consolidated range)<br>swelling index<br>secondary compression index<br>coefficient of volume change                                                                                                                                                                                                                                                                                                                    |
| к<br>Ш.                                         | bulk modulus of compressibility SOIL PROPERTIES                                                                                                                                                                                                                                                                                                                                                     | C <sub>v</sub><br>Ch<br>T <sub>v</sub><br>U                                                                                                                                          | coefficient of consolidation (vertical<br>direction)<br>coefficient of consolidation (horizontal<br>direction)<br>time factor (vertical direction)<br>degree of consolidation                                                                                                                                                                                                                                                                                                         |
| iii.<br>(a)                                     | Index Properties                                                                                                                                                                                                                                                                                                                                                                                    | σ΄ <sub>ρ</sub><br>OCR                                                                                                                                                               | degree of consolidation<br>pre-consolidation stress<br>over-consolidation ratio = $\sigma'_{p} / \sigma'_{vo}$                                                                                                                                                                                                                                                                                                                                                                        |
|                                                 | bulk density (bulk unit weight)*<br>dry density (dry unit weight)<br>density (unit weight) of water<br>density (unit weight) of solid particles<br>unit weight of submerged soil<br>$(\gamma' = \gamma - \gamma_w)$<br>relative density (specific gravity) of solid<br>particles (D <sub>R</sub> = $\rho_s / \rho_w$ ) (formerly G <sub>s</sub> )<br>void ratio<br>porosity<br>degree of saturation | (d)<br>τ <sub>p</sub> , τ <sub>r</sub><br>φ'<br>δ<br>μ<br>c'<br>c <sub>u</sub> , s <sub>u</sub><br>p<br>p'<br>q<br>q <sub>u</sub><br>S <sub>t</sub>                                  | Shear Strength<br>peak and residual shear strength<br>effective angle of internal friction<br>angle of interface friction<br>coefficient of friction = tan $\delta$<br>effective cohesion<br>undrained shear strength ( $\phi = 0$ analysis)<br>mean total stress ( $\sigma_1 + \sigma_3$ )/2<br>mean effective stress ( $\sigma'_1 + \sigma'_3$ )/2<br>( $\sigma_1 - \sigma_3$ )/2 or ( $\sigma'_1 - \sigma'_3$ )/2<br>compressive strength ( $\sigma_1 - \sigma_3$ )<br>sensitivity |
| where                                           | ty symbol is $\rho$ . Unit weight symbol is $\gamma = \rho g$ (i.e. mass density multiplied by eration due to gravity)                                                                                                                                                                                                                                                                              | <b>Notes</b> : 1<br>2                                                                                                                                                                | $τ = c' + \sigma' tan \phi'$<br>shear strength = (compressive strength)/2                                                                                                                                                                                                                                                                                                                                                                                                             |



### RECORD OF BOREHOLE: BH101

SHEET 1 OF 1 DATUM: -

LOCATION: 22+200 1.20 m Lt of C/L

BORING DATE: April 15, 2015

| SPT Hammer: | Mass, | 140lbs.; | DROP, | 30in. |
|-------------|-------|----------|-------|-------|

|     | RORING METHOD         |                                                 | SOIL PROFILE                                                       |               |                | SA       | MPL  | -          | DYNAMIC PENETR<br>RESISTANCE, BLO | NS/0.3m | l              | HYDRAULIC C<br>k, cm/s | ONDUC             |                                   | ود<br>ا                    | PIEZOMETER                      |
|-----|-----------------------|-------------------------------------------------|--------------------------------------------------------------------|---------------|----------------|----------|------|------------|-----------------------------------|---------|----------------|------------------------|-------------------|-----------------------------------|----------------------------|---------------------------------|
|     | ΠΞΜ                   |                                                 |                                                                    | STRATA PLOT   |                | <u>ب</u> |      | .3m        | 20 40                             | 60      | 80             | 10 <sup>-6</sup> 1     | 0 <sup>-5</sup> 1 | 10 <sup>-4</sup> 10 <sup>-3</sup> | ADDITIONAL<br>LAB. TESTING | OR<br>STANDPIPE<br>INSTALLATION |
|     | U.C.                  |                                                 | DESCRIPTION                                                        | TAP           | ELEV.          | NUMBER   | TYPE | NS/0       | SHEAR STRENGTH<br>Cu, kPa         | nat V.  | - Q-●<br>- U-● | WATER C                |                   | T PERCENT                         | 3. TE                      |                                 |
|     | a O E                 |                                                 |                                                                    | TRA           | DEPTH<br>(m)   | R        | -    | BLOWS/0.3m |                                   | Pocket  | Pen - 📕<br>80  | Wp                     | W                 | NP - Non-Plasti<br>30 40          | EFF .                      |                                 |
| +   |                       | +                                               | Ground Surface                                                     | ~ ~           | 000 0          | +        | -    | <u> </u>   | 20 40                             | 00      | 00             | 10 2                   | 20                | 30 40                             |                            |                                 |
| 0   |                       | ╡                                               | ASPHALT                                                            |               | 263.86         |          | -    | -          |                                   |         |                |                        |                   |                                   | -                          |                                 |
|     |                       |                                                 | FILL-(SW-SM) SAND and GRAVEL, crushed, some silt; brown; (BASE),   | - 🛞           | 0.11           | _        |      |            |                                   |         |                |                        |                   |                                   |                            |                                 |
|     |                       |                                                 | \ non-cohesive, moist, compact                                     | /₩            | 263.41         | 1        | GS   |            |                                   |         |                |                        |                   |                                   |                            |                                 |
|     |                       |                                                 | FILL-(SM) gravelley SILTY SAND;<br>brown; (SUBBASE), non-cohesive, | $ \mathbb{N}$ | 8 0.40         |          |      |            |                                   |         |                |                        |                   |                                   |                            |                                 |
|     |                       |                                                 | moist, compact                                                     |               | K              |          | 1    |            |                                   |         |                |                        |                   |                                   |                            |                                 |
| 1   |                       |                                                 | FILL-(SM) SILTY SAND, trace clay;<br>brown, oxidation staining;    | - 🕅           | K              | 2        | SS   | 32         |                                   |         |                |                        | 0                 |                                   |                            |                                 |
|     |                       |                                                 | non-cohesive, moist to wet, dense                                  |               | 8              | $\vdash$ | -    |            |                                   |         |                |                        |                   |                                   |                            |                                 |
|     |                       | ╞                                               | (ML) SILT, trace sand, some clay;                                  | -M            | 262.49<br>1.37 | -        |      |            |                                   |         |                |                        |                   |                                   |                            |                                 |
|     |                       | oling                                           | light brown, oxidation staining;<br>non-cohesive, wet, compact     |               |                |          | 1    |            |                                   |         |                |                        |                   |                                   |                            | 00-00/ 04-00/                   |
|     |                       | Sam                                             | non-conesive, wer, compact                                         |               |                | 3        | SS   | 24         |                                   |         |                | 0                      |                   |                                   | мн                         | GR=0% SA=2%<br>SI=91% CL=7%     |
| 2   | ٥                     | SPT                                             |                                                                    |               |                | $\vdash$ | -    |            |                                   |         |                |                        |                   |                                   |                            |                                 |
|     | M 45                  | with                                            |                                                                    |               |                |          |      |            |                                   |         |                |                        |                   |                                   |                            |                                 |
|     | U<br>P<br>Q           | uger                                            | Dense; below 2.29 mbgs                                             |               |                |          | 1    |            |                                   |         |                |                        |                   |                                   |                            |                                 |
|     | ounte                 | tem /                                           |                                                                    |               | 1              | 4        | SS   | 32         |                                   |         |                |                        | 0                 |                                   |                            |                                 |
|     | Truck Mounted CEM 45D | alid St                                         |                                                                    |               | 1              | $\vdash$ | 1    |            |                                   |         |                |                        |                   |                                   |                            |                                 |
| 3   | Ĕ                     | 150 mm O.D. Solid Stern Auger with SPT Sampling | Grey; below 3.05 mbgs                                              |               | 1              |          |      |            |                                   |         |                |                        |                   |                                   |                            |                                 |
|     |                       | о́<br>ш                                         | cicy, below 0.00 mbgo                                              |               |                | 5        | ss   | 37         |                                   |         |                |                        | L                 |                                   |                            |                                 |
|     |                       | 150 m                                           |                                                                    |               | 1              | ່        | 000  | 51         |                                   |         |                |                        | þ                 |                                   |                            |                                 |
|     |                       |                                                 |                                                                    |               | 1              |          | 1    |            |                                   |         |                |                        |                   |                                   |                            |                                 |
|     |                       |                                                 |                                                                    |               | 1              | $\vdash$ |      |            |                                   |         |                |                        |                   |                                   |                            |                                 |
| 4   |                       |                                                 |                                                                    |               | 1              | 6        | ss   | 40         |                                   |         |                | 0                      |                   |                                   |                            |                                 |
|     |                       |                                                 |                                                                    |               |                | Ľ        |      |            |                                   |         |                |                        |                   |                                   |                            |                                 |
|     |                       |                                                 |                                                                    |               | 1              |          |      |            |                                   |         |                |                        |                   |                                   |                            |                                 |
|     |                       |                                                 |                                                                    |               | 1              | $\vdash$ | -    |            |                                   |         |                |                        |                   |                                   |                            |                                 |
|     |                       |                                                 |                                                                    |               | 1              | 7        | ss   | 48         |                                   |         |                |                        | þ                 |                                   |                            |                                 |
| 5   |                       | $\square$                                       | Find of Doorbolo                                                   |               | 258.83<br>5.03 | -        |      |            |                                   |         |                |                        |                   |                                   |                            |                                 |
|     |                       |                                                 | End of Borehole.                                                   |               | 5.03           | Ί        |      |            |                                   |         |                |                        |                   |                                   |                            |                                 |
|     |                       |                                                 | NOTE:<br>1. Free water measured at 2.05                            |               |                |          |      |            |                                   |         |                |                        |                   |                                   |                            |                                 |
|     |                       |                                                 | mbgs in open borehole upon<br>completion of drilling.              |               | 1              |          |      |            |                                   |         |                |                        |                   |                                   |                            |                                 |
|     |                       |                                                 | 2. Borehole caved to 2.05                                          |               | 1              |          |      |            |                                   |         |                |                        |                   |                                   |                            |                                 |
| 6   |                       |                                                 | mbgs upon completion of drilling.                                  |               | 1              |          |      |            |                                   |         |                |                        |                   |                                   |                            |                                 |
|     |                       |                                                 |                                                                    |               |                |          |      |            |                                   |         |                |                        |                   |                                   |                            |                                 |
|     |                       |                                                 |                                                                    |               |                |          |      |            |                                   |         |                |                        |                   |                                   |                            |                                 |
|     |                       |                                                 |                                                                    |               | 1              |          |      |            |                                   |         |                |                        |                   |                                   |                            |                                 |
|     |                       |                                                 |                                                                    |               | 1              |          |      |            |                                   |         |                |                        |                   |                                   |                            |                                 |
| 7   |                       |                                                 |                                                                    |               | 1              |          |      |            |                                   |         |                |                        |                   |                                   |                            |                                 |
|     |                       |                                                 |                                                                    |               |                |          |      |            |                                   |         |                |                        |                   |                                   |                            |                                 |
|     |                       |                                                 |                                                                    |               | 1              |          |      |            |                                   |         |                |                        |                   |                                   |                            |                                 |
|     |                       |                                                 |                                                                    |               | 1              |          |      |            |                                   |         |                |                        |                   |                                   |                            |                                 |
|     |                       |                                                 |                                                                    |               | 1              |          |      |            |                                   |         |                |                        |                   |                                   |                            |                                 |
| 8   |                       |                                                 |                                                                    |               |                |          |      |            |                                   |         |                |                        |                   |                                   |                            |                                 |
|     |                       |                                                 |                                                                    |               |                |          |      |            |                                   |         |                |                        |                   |                                   |                            |                                 |
|     |                       |                                                 |                                                                    |               | 1              |          |      |            |                                   |         |                |                        |                   |                                   |                            |                                 |
|     |                       |                                                 |                                                                    |               | 1              |          |      |            |                                   |         |                |                        |                   |                                   |                            |                                 |
|     |                       |                                                 |                                                                    |               | 1              |          |      |            |                                   |         |                |                        |                   |                                   |                            |                                 |
| 9   |                       |                                                 |                                                                    |               | 1              |          |      |            |                                   |         |                |                        |                   |                                   |                            |                                 |
|     |                       |                                                 |                                                                    |               |                | [        |      |            |                                   |         |                |                        |                   |                                   |                            |                                 |
|     |                       |                                                 |                                                                    |               | 1              |          |      |            |                                   |         |                |                        |                   |                                   |                            |                                 |
|     |                       |                                                 |                                                                    |               | 1              |          |      |            |                                   |         |                |                        |                   |                                   |                            |                                 |
|     |                       |                                                 |                                                                    |               | 1              |          |      |            |                                   |         |                |                        |                   |                                   |                            |                                 |
| 10  |                       |                                                 |                                                                    |               |                | [        |      |            |                                   |         |                |                        |                   |                                   |                            |                                 |
|     |                       |                                                 |                                                                    |               |                |          |      |            |                                   |         |                |                        |                   |                                   |                            |                                 |
|     |                       |                                                 |                                                                    |               |                |          |      |            |                                   |         |                | •                      |                   |                                   |                            | •                               |
| DEF | PTF                   | H SC                                            | CALE                                                               |               |                |          |      |            |                                   | Gold    | er             |                        |                   |                                   | L                          | OGGED: DM                       |
| 1:5 | 50                    |                                                 |                                                                    |               |                |          |      |            | <b>V</b>                          | Associ  | ates           |                        |                   |                                   | CH                         | IECKED: JBH                     |

### RECORD OF BOREHOLE: BH102

SHEET 1 OF 1

LOCATION: 22+600 1.30 m Rt of C/L

BORING DATE: April 15, 2015

DATUM: -

| <u>ہ</u> |                   |                                       | SOIL PROFILE                                                                                                                                                              |             | 1                      | SA     | MPL  | 1          | RESISTA                  | C PENETRA<br>NCE, BLO | VS/0.3m                |                          |                | ULIC CON<br>k, cm/s           |   |              | Ţ                      | ING                        | PIEZOMETER<br>OR<br>STANDPIPE |
|----------|-------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------|--------|------|------------|--------------------------|-----------------------|------------------------|--------------------------|----------------|-------------------------------|---|--------------|------------------------|----------------------------|-------------------------------|
| METRES   |                   | BORING METHOD                         | DESCRIPTION                                                                                                                                                               | STRATA PLOT | ELEV.<br>DEPTH         | NUMBER | түре | BLOWS/0.3m | 20<br>SHEAR S<br>Cu, kPa | 40<br>TRENGTH         | 60<br>nat V.<br>rem V. | 80<br>+ Q - •<br>+ U - • | 10<br>WA<br>Wn | 6 10 <sup>5</sup><br>\TER CON |   | PERCE        |                        | ADDITIONAL<br>LAB. TESTING | STANDPIPE<br>INSTALLATION     |
|          | 6                 |                                       | Convert Surfaces                                                                                                                                                          | STR         | (m)                    | z      |      | BLG        | 20                       | 40                    | Pocke<br>60            | et Pen - 📕<br>80         | 10<br>10       |                               | 3 | NP - No<br>0 | WI<br>on-Plastic<br>40 | L.                         |                               |
| 0        |                   |                                       | Ground Surface SURFACE TREAMENT                                                                                                                                           |             | 253.30                 | 1      | GS   |            |                          |                       | -                      |                          |                |                               | _ |              |                        |                            |                               |
|          |                   |                                       | FILL-(SW-SM) SAND and GRAVEL,<br>crushed, some silt; brown; (BASE),<br>non-cohesive, moist, compact<br>FILL-(SM) gravelley SILTY SAND;<br>brown; (SUBBASE), non-cohesive, |             | 0.10<br>252.69<br>0.61 |        | GS   |            |                          |                       |                        |                          | 0              |                               |   |              |                        | м                          | GR=27% SA=57%<br>FINES=16%    |
| 1        |                   | ľ                                     | FILL-(SM) SILTY SAND, trace gravel,<br>some clay, brown; non-coheisve,<br>compact                                                                                         |             |                        | 3      | SS   | 26         |                          |                       |                        |                          | 0              |                               |   |              |                        |                            |                               |
|          | ٥                 | SPT Sampling                          | (CL) Sandy SILTY CLAY, low plastic,<br>some sub-rounded to sub-angular<br>gravel; brown, oxidation staining;<br>cohesive, w~PL, very stiff                                |             | 251.93<br>1.37         |        | SS   | 24         |                          |                       |                        |                          |                | 0                             |   |              |                        |                            |                               |
| 2        | ck Mounted CEM 45 | 150 mm O.D. Solid Stem Auger with SPT | (CL) Sandy SILTY CLAY, low plastic,<br>some sub-rounded to sub-angular<br>gravel; brown, oxidation staining;<br>(TILL), cohesive, w~PL, hard                              |             | <u>251.17</u><br>2.13  | 5      | SS   | 44         |                          |                       |                        |                          |                | >                             |   |              |                        |                            |                               |
| 3        | Τn                | 150 mm O.D. So                        | (ML/SM) SILT and SAND, trace<br>sub-rounded to sub-angular gravel,<br>some clay; light brown to grey,<br>oxidation staining; (TILL),<br>non-cohesive, moist, very dense   |             | 250.40                 | 6      | SS   | 50/        | 127mm                    |                       |                        |                          | 0              |                               |   |              |                        |                            |                               |
| 4        |                   |                                       |                                                                                                                                                                           |             |                        | 7      | SS   | 50/        | 102mm                    |                       |                        |                          | 0              |                               |   |              |                        |                            |                               |
|          |                   |                                       | End of Borehole.                                                                                                                                                          |             | 248.60<br>4.70         | 8      | SS   | 50/        | 127mm                    |                       |                        |                          | 0              |                               |   |              |                        |                            |                               |
| 5        |                   |                                       | NOTE:<br>1. Free water measured at 3.95<br>mbgs in open borehole upon<br>completion of drilling.<br>2. Borehole caved to 4.25<br>mbgs upon completion of                  |             |                        |        |      |            |                          |                       |                        |                          |                |                               |   |              |                        |                            |                               |
| 6        |                   |                                       | drilling.                                                                                                                                                                 |             |                        |        |      |            |                          |                       |                        |                          |                |                               |   |              |                        |                            |                               |
| 7        |                   |                                       |                                                                                                                                                                           |             |                        |        |      |            |                          |                       |                        |                          |                |                               |   |              |                        |                            |                               |
| 8        |                   |                                       |                                                                                                                                                                           |             |                        |        |      |            |                          |                       |                        |                          |                |                               |   |              |                        |                            |                               |
| 9        |                   |                                       |                                                                                                                                                                           |             |                        |        |      |            |                          |                       |                        |                          |                |                               |   |              |                        |                            |                               |
| J        |                   |                                       |                                                                                                                                                                           |             |                        |        |      |            |                          |                       |                        |                          |                |                               |   |              |                        |                            |                               |
| 10       |                   |                                       |                                                                                                                                                                           |             |                        |        |      |            |                          |                       |                        |                          |                |                               |   |              |                        |                            |                               |
| DEI      | РТ                | нs                                    | CALE                                                                                                                                                                      |             |                        |        |      |            |                          | Á                     | Gold                   | er                       |                |                               |   |              |                        | L                          | OGGED: DM                     |

#### RECORD OF BOREHOLE: BH103

LOCATION: 23+142 1.50 m Lt of C/L

BORING DATE: April 14, 2015

SHEET 1 OF 1

DATUM: -

| 5      | 0                     |                                    | SOIL PROFILE                                                                                                                                                                  | ⊢           | 1            | SA     | MPL    |            | DYNAMIC PEN<br>RESISTANCE |            |                              |       |                        | cm/s             |                            |                  | T            | ING -                        | PIEZOMETER                                |
|--------|-----------------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|--------|--------|------------|---------------------------|------------|------------------------------|-------|------------------------|------------------|----------------------------|------------------|--------------|------------------------------|-------------------------------------------|
| METRES |                       | BORING METHOD                      | DESCRIPTION                                                                                                                                                                   | STRATA PLOT | ELEV.        | NUMBER | TYPE - | BLOWS/0.3m | SHEAR STRE                | 40<br>JGTH | nat V. +                     | Q - • | 10 <sup>6</sup><br>WAT | 10 <sup>-5</sup> | 10 <sup>-1</sup><br>TENT P | ERCENT           |              | ADDITIONAL<br>LAB. TESTING - | STANDPIPE                                 |
| ~      |                       | BOR                                |                                                                                                                                                                               | STRA        | DEPTH<br>(m) | ΪN     | Ĺ,     | BLOW       | Cu, kPa<br>20             | 40         | rem V. +<br>Pocket I<br>60 8 |       | Wp 10                  | 20               | ⊖ <sup>W</sup><br>30       | IP - Non-I<br>40 | l<br>Plastic | LAE                          |                                           |
| 0      |                       |                                    | Ground Surface                                                                                                                                                                |             | 245.69       |        |        |            |                           |            |                              |       |                        |                  |                            |                  |              |                              |                                           |
|        |                       |                                    | FILL-(SW-SM) SAND and GRAVEL,<br>crushed, some silt; brown; (BASE),<br>non-cohesive, moist, compact<br>FILL-(SM) gravelley SILTY SAND; -<br>brown; (SUBBASE), non-cohesive, - |             | 0.10         |        | GS     |            |                           |            |                              |       |                        |                  |                            |                  |              |                              |                                           |
| 1      |                       | Đ.                                 | moist, compact                                                                                                                                                                |             | 244.32       |        | SS     | 50         |                           |            |                              |       | 0                      |                  |                            |                  |              |                              | Cuttings                                  |
| 2      | M 45D                 | with SPT Samplir                   | (CL) Sandy SILTY CLAY, low plastic;<br>brown to dark brown, oxidation<br>staining; cohesive, w>PL, stiff                                                                      |             | 1.37         | 3      | ss     | 15         |                           |            |                              |       |                        |                  | 0                          |                  |              |                              | Apr. 28/15                                |
|        | Truck Mounted CEM 45D | Solid Stem Auger with SPT Sampling | (CL) SILTY CLAY, low plastic, trace<br>sand, trace fine gravel; brown mottled<br>grey; (TILL), cohesive, w>PL, hard                                                           |             | 243.56       |        | SS     | 39         |                           |            |                              |       |                        |                  | 0                          |                  |              | мн                           | Bentonite<br>GR=2% SA=5%<br>SI=42% CL=51% |
| 3      |                       | 150 mm O.D. S                      | (ML/SM) SILT and SAND, trace<br>sub-rounded gravel, some clay; brown,<br>oxidation staining; (TILL),<br>non-cohesive, moist to wet, very dense                                |             | 242.79       |        | ss     | 50/        | 127mm                     |            |                              |       | 0                      |                  |                            |                  |              |                              | Silica Sand                               |
| 4      |                       |                                    |                                                                                                                                                                               |             |              | _6_    | SS     | 50/        | 76mm                      |            |                              |       | 0                      |                  |                            |                  |              |                              | 1.5 m Slot PVC<br>Screen                  |
| -      |                       |                                    | End of Borehole.                                                                                                                                                              |             | 241.07       | _7_    | SS     | 50/        | 51mm                      |            |                              |       | 0                      |                  |                            |                  |              |                              |                                           |
| 5      |                       |                                    | NOTE:<br>1. Free water measured at 2.30<br>mbgs in open borehole upon<br>completion of drilling.<br>2. Free water measured at 1.38<br>mbgs in peizometer on April<br>28, 2015 |             |              |        |        |            |                           |            |                              |       |                        |                  |                            |                  |              |                              |                                           |
| 6      |                       |                                    |                                                                                                                                                                               |             |              |        |        |            |                           |            |                              |       |                        |                  |                            |                  |              |                              |                                           |
| 7      |                       |                                    |                                                                                                                                                                               |             |              |        |        |            |                           |            |                              |       |                        |                  |                            |                  |              |                              |                                           |
| 8      |                       |                                    |                                                                                                                                                                               |             |              |        |        |            |                           |            |                              |       |                        |                  |                            |                  |              |                              |                                           |
| 9      |                       |                                    |                                                                                                                                                                               |             |              |        |        |            |                           |            |                              |       |                        |                  |                            |                  |              |                              |                                           |
| 10     |                       |                                    |                                                                                                                                                                               |             |              |        |        |            |                           |            |                              |       |                        |                  |                            |                  |              |                              |                                           |
| DE     | РТ                    | H S(                               | CALE                                                                                                                                                                          | 1           | 1            | I      | I      |            |                           | à          | Golde<br>ssocia              |       | I_                     | I                |                            |                  |              |                              | DGGED: DM<br>ECKED: JBH                   |

#### LOCATION: 23+358 1.50 m Rt of C/L

### RECORD OF BOREHOLE: BH104

SHEET 1 OF 1

BORING DATE: April 14, 2015

DATUM: -

|        | НОР                                                                 | SOIL PROFILE                                                                                                                                                                    |             |                | SA     | MPL    | -            | DYNAMIO<br>RESISTA | C PENETRA<br>NCE, BLOW | TION<br>'S/0.3m      | l             | HYDRAULIC CONDU<br>k, cm/s        | JCTIVITY,                         | T       | Ę,F                          | PIEZOMETER                      |
|--------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|--------|--------|--------------|--------------------|------------------------|----------------------|---------------|-----------------------------------|-----------------------------------|---------|------------------------------|---------------------------------|
| METRES | ORING METHOD                                                        |                                                                                                                                                                                 | STRATA PLOT | ELEV.          | Ë      | ці.    | BLOWS/0.3m - | 20                 | 40                     |                      | 30            | 10 <sup>-6</sup> 10 <sup>-5</sup> | 10 <sup>-4</sup> 10 <sup>-4</sup> |         | ADDITIONAL<br>LAB. TESTING - | OR<br>STANDPIPE<br>INSTALLATION |
| ME     | RING                                                                | DESCRIPTION                                                                                                                                                                     | ATA I       | DEPTH          | NUMBER | TYPE - | /S/          | SHEAR S<br>Cu, kPa | TRENGTH                | nat V. +<br>rem V. + | U - 🛈         | WATER CONTE                       |                                   |         | AB. T                        |                                 |
|        | BOF                                                                 |                                                                                                                                                                                 | STR/        | (m)            | ž      | ľ      | BLC          | 20                 | 40                     | Pocket               | Pen - 🔳<br>30 | Wp                                | W W<br>NP - Non-<br>30 40         | Plastic | 143                          |                                 |
| 0      |                                                                     | Ground Surface                                                                                                                                                                  |             | 249.21         |        |        |              |                    |                        |                      |               |                                   |                                   |         |                              |                                 |
|        |                                                                     | SURFACE TREAMENT<br>FILL-(SW-SM) SAND and GRAVEL,                                                                                                                               | -/          | 0.03           |        | GS     |              |                    |                        |                      |               |                                   |                                   |         |                              |                                 |
|        |                                                                     | crushed, some silt; brown; (BASE),                                                                                                                                              |             | 0.13           | 2      | GS     |              |                    |                        |                      |               |                                   |                                   |         |                              |                                 |
|        |                                                                     | Inon-cohesive, moist, compact<br>FILL-(SM) gravelley SILTY SAND;                                                                                                                | -1          | 248.68         |        | -      |              |                    |                        |                      |               |                                   |                                   |         |                              |                                 |
|        |                                                                     | brown; (SUBBASE), non-cohesive,<br>moist, compact                                                                                                                               |             | *              |        |        |              |                    |                        |                      |               |                                   |                                   |         |                              |                                 |
| 1      |                                                                     | FILL-(CL-ML) Sandy CLAYEY SILT,                                                                                                                                                 | - 🕅         | 2              | 3      | SS     | 32           |                    |                        |                      |               | Φ                                 |                                   |         |                              |                                 |
|        |                                                                     | slight plasticity, some sub-angular to<br>sub-rounded gravel; brown, oxidation                                                                                                  |             |                |        |        |              |                    |                        |                      |               |                                   |                                   |         |                              |                                 |
|        |                                                                     | staining; cohesive, w <pl, hard<="" td=""><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></pl,> |             | *              |        |        |              |                    |                        |                      |               |                                   |                                   |         |                              |                                 |
|        |                                                                     |                                                                                                                                                                                 |             |                | 4      | SS     | 50/1         | 127mm              |                        |                      |               | 0                                 |                                   |         |                              | Cuttings                        |
|        |                                                                     |                                                                                                                                                                                 |             | *              |        |        |              |                    |                        |                      |               |                                   |                                   |         |                              |                                 |
| 2      |                                                                     |                                                                                                                                                                                 |             |                |        |        |              |                    |                        |                      |               |                                   |                                   |         |                              |                                 |
|        |                                                                     |                                                                                                                                                                                 |             |                |        |        |              |                    |                        |                      |               |                                   |                                   |         |                              |                                 |
|        |                                                                     |                                                                                                                                                                                 |             |                | 5      | SS     | 43           |                    |                        |                      |               | 0                                 |                                   |         |                              |                                 |
|        |                                                                     |                                                                                                                                                                                 |             | 3              | -      | 1      |              |                    |                        |                      |               |                                   |                                   |         |                              |                                 |
| 3      | g                                                                   | Brown to black; below 3.05                                                                                                                                                      |             |                |        |        |              |                    |                        |                      |               |                                   |                                   |         |                              |                                 |
|        | amplin                                                              | mbgs                                                                                                                                                                            |             | *              | 6      | SS     | 39           |                    |                        |                      |               | D                                 |                                   |         |                              |                                 |
|        | Truck Mounted CEM 45D<br>mm O.D. Solid Stem Auger with SPT Sampling |                                                                                                                                                                                 |             |                |        |        |              |                    |                        |                      |               |                                   |                                   |         |                              |                                 |
|        | Truck Mounted CEM 45D<br>Solid Stem Auger with SF                   | Suspected boulders and cobbles at 3.66 mbgs                                                                                                                                     |             |                |        | Ì      |              |                    |                        |                      |               |                                   |                                   |         |                              |                                 |
| 4      | Auger                                                               | b sources at 3.00 muys                                                                                                                                                          |             | 245.17         |        | Ì      |              |                    |                        |                      |               |                                   |                                   |         |                              |                                 |
| -      | Mount<br>Stem                                                       | FILL-(ML/SM) SILT and SAND, trace sub-angular to sub-rounded gravel,                                                                                                            |             | 4.04           |        |        |              |                    |                        |                      |               |                                   |                                   |         |                              |                                 |
|        | Solid (                                                             | some clay; light brown to black;                                                                                                                                                |             |                |        |        |              |                    |                        |                      |               |                                   |                                   |         |                              | Bentonite                       |
|        | O<br>O                                                              | non-cohesive, moist, compact                                                                                                                                                    |             |                |        |        |              |                    |                        |                      |               |                                   |                                   |         |                              |                                 |
|        | mm                                                                  |                                                                                                                                                                                 |             |                | 7      | SS     | 18           |                    |                        |                      |               | 0                                 |                                   |         |                              |                                 |
| 5      | 150                                                                 |                                                                                                                                                                                 |             | 1              | -      | -      |              |                    |                        |                      |               |                                   |                                   |         |                              |                                 |
|        |                                                                     |                                                                                                                                                                                 |             |                |        |        |              |                    |                        |                      |               |                                   |                                   |         |                              |                                 |
|        |                                                                     |                                                                                                                                                                                 |             | 243.65         |        |        |              |                    |                        |                      |               |                                   |                                   |         |                              |                                 |
|        |                                                                     | (ML/SM) SILT and SAND, trace<br>sub-rounded gravel, some clay; light                                                                                                            |             | 5.56           |        | Ì      |              |                    |                        |                      |               |                                   |                                   |         |                              |                                 |
| 6      |                                                                     | brown to grey; (TILL), non-cohesive, moist, very dense                                                                                                                          |             |                |        |        |              |                    |                        |                      |               |                                   |                                   |         |                              | Silica Sand                     |
|        |                                                                     |                                                                                                                                                                                 |             |                | 8      | SS     | 50/1         | 127mm              |                        |                      |               | 0                                 |                                   |         | мн                           | GR=3%<br>SA=45% Apr. 28/15      |
|        |                                                                     |                                                                                                                                                                                 |             |                |        |        |              |                    |                        |                      |               |                                   |                                   |         |                              | SI=44%                          |
|        |                                                                     |                                                                                                                                                                                 |             |                |        |        |              |                    |                        |                      |               |                                   |                                   |         |                              | CL=8%                           |
| _      |                                                                     |                                                                                                                                                                                 |             |                |        |        |              |                    |                        |                      |               |                                   |                                   |         |                              | 1.5 m Slot PVC Screen           |
| 7      |                                                                     |                                                                                                                                                                                 |             |                |        |        |              |                    |                        |                      |               |                                   |                                   |         |                              |                                 |
|        |                                                                     |                                                                                                                                                                                 |             | {              |        | Ì      |              |                    |                        |                      |               |                                   |                                   |         |                              |                                 |
|        |                                                                     |                                                                                                                                                                                 |             |                |        |        |              |                    |                        |                      |               |                                   |                                   |         |                              |                                 |
|        |                                                                     |                                                                                                                                                                                 |             |                | 9      | SS     | 50/1         | 102mm              |                        |                      |               | 0                                 |                                   |         |                              |                                 |
| 8      |                                                                     | End of Borehole.                                                                                                                                                                | _1114       | 241.18<br>8.03 |        | -      |              |                    |                        |                      |               |                                   |                                   |         |                              |                                 |
|        |                                                                     | NOTE:                                                                                                                                                                           |             |                |        | Ì      |              |                    |                        |                      |               |                                   |                                   |         |                              |                                 |
|        |                                                                     | 1. Free water not encountered<br>in open borehole upon                                                                                                                          |             |                |        | Ì      |              |                    |                        |                      |               |                                   |                                   |         |                              |                                 |
|        |                                                                     | completion of drilling.<br>2. Free water measured at 6.23                                                                                                                       |             |                |        | Ì      |              |                    |                        |                      |               |                                   |                                   |         |                              |                                 |
| 9      |                                                                     | mbgs in peizometer on April<br>28, 2015                                                                                                                                         |             |                |        |        |              |                    |                        |                      |               |                                   |                                   |         |                              |                                 |
|        |                                                                     | 3. Auger Refusal on suspected<br>boulders and cobbles at 3.66                                                                                                                   |             |                |        | Ì      |              |                    |                        |                      |               |                                   |                                   |         |                              |                                 |
|        |                                                                     | mbgs. Drilled second hole and<br>continued sampling 2 m east.                                                                                                                   |             |                |        | Ì      |              |                    |                        |                      |               |                                   |                                   |         |                              |                                 |
|        |                                                                     | Sommuou Samping 2 m east.                                                                                                                                                       |             |                |        | Ì      |              |                    |                        |                      |               |                                   |                                   |         |                              |                                 |
| 10     |                                                                     |                                                                                                                                                                                 |             |                |        |        |              |                    |                        |                      |               |                                   |                                   |         |                              |                                 |
| 10     |                                                                     |                                                                                                                                                                                 |             |                |        |        |              |                    |                        |                      |               |                                   |                                   |         |                              |                                 |
|        |                                                                     | 1                                                                                                                                                                               | I           | 1              | L      | I      |              |                    |                        |                      | 1             | I                                 |                                   |         |                              | l                               |
| DEF    | PTH S                                                               | SCALE                                                                                                                                                                           |             |                |        |        |              |                    |                        | Gold<br>ssoci        | er            |                                   |                                   |         |                              | OGGED: DM                       |
| 1:8    | 50                                                                  |                                                                                                                                                                                 |             |                |        |        |              |                    | <b>VJ</b> A            | ssoci                | ates          |                                   |                                   |         | CH                           | ECKED: JBH                      |

### RECORD OF BOREHOLE: BH105

SHEET 1 OF 1

LOCATION: 23+800 1.50 m Lt of C/L

BORING DATE: April 14, 2015

DATUM: -

SPT Hammer: Mass, 140lbs.; DROP, 30in.

| S      | THOD                                                                    | SOIL PROFILE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5                              |        | MPLE       |          | (NAMIC PENE<br>ESISTANCE, BI            |              |                                                | HYDRAULIC C<br>k, cm/s<br>10 <sup>-6</sup> |        |       | I | ING                        | PIEZOMETER<br>OR<br>STANDPIPE<br>INSTALLATION |
|--------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------|------------|----------|-----------------------------------------|--------------|------------------------------------------------|--------------------------------------------|--------|-------|---|----------------------------|-----------------------------------------------|
| METRES | BORING METHOD                                                           | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TRATA PLOT<br>TOTA PLOT<br>(m) | NUMBER | TYPE       |          | 20 40<br>HEAR STRENG<br>I, kPa<br>20 40 | iTH na<br>re | t V. + Q - ●<br>m V. ⊕ U - ●<br>Pocket Pen - ■ | WATER C                                    | ONTENT | PERCE |   | ADDITIONAL<br>LAB. TESTING | STANDPIPE<br>INSTALLATION                     |
| 0      |                                                                         | Ground Surface SURFACE TREAMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 231.0                          |        |            | 1        |                                         |              |                                                |                                            |        |       |   |                            |                                               |
| 1      |                                                                         | FILL-(SW-SM) SAND and GRAVEL,<br>crushed, some silt; brown; (BASE),<br>non-cohesive, moist, compact<br>FILL-(SM) gravelley SILTY SAND;<br>brown; (SUBBASE), non-cohesive,<br>moist, compact<br>(CL) SILTY CLAY, low plastic, trace<br>fine gravel, some sand; light brown to<br>grey mottled brown, oxidation staining;<br>cohesive, w <pl, hard<="" stiff="" td="" to="" very=""><td></td><td>1</td><td>GS<br/>SS 2</td><td>18</td><td></td><td></td><td></td><td>0</td><td></td><td></td><td></td><td></td><td></td></pl,> |                                | 1      | GS<br>SS 2 | 18       |                                         |              |                                                | 0                                          |        |       |   |                            |                                               |
| 2      | d CEM 45D<br>uger with SPT Sampling                                     | (ML/SM) SILT and SAND, trace<br>sub-rounded to sub-angular gravel,<br>some clay, light brown, oxidation<br>staining; (TILL), non-cohesive, moist,<br>very dense                                                                                                                                                                                                                                                                                                                                                              | 229.3                          | 3B     | 55         | 50/127mr |                                         |              |                                                | 0                                          |        |       |   |                            |                                               |
| 3      | Truck Mounted CEM 45D<br>150 mm O.D. Solid Stem Auger with SPT Sampling |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                | 5      | SS         | 50/127mr | n                                       |              |                                                | þ                                          |        |       |   |                            |                                               |
| 4      | 15                                                                      | Grey; below 3.81 mbgs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                | 6      | SS         | 50/127mr | n                                       |              |                                                | o                                          |        |       |   |                            |                                               |
|        |                                                                         | Some clay; below 4.57 mbgs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                | 7      | SS 6       | 10       |                                         |              |                                                | o                                          |        |       |   |                            |                                               |
| 6      |                                                                         | End of Borehole.<br>NOTE:<br>1. Free water not encountered<br>in open borehole upon<br>completion of drilling.<br>2. Borehole caved to 4.50<br>mbgs upon completion of<br>drilling.                                                                                                                                                                                                                                                                                                                                          | <u> </u>                       |        |            |          |                                         |              |                                                |                                            |        |       |   |                            |                                               |
| 7      |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |        |            |          |                                         |              |                                                |                                            |        |       |   |                            |                                               |
| 8      |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |        |            |          |                                         |              |                                                |                                            |        |       |   |                            |                                               |
| 9      |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |        |            |          |                                         |              |                                                |                                            |        |       |   |                            |                                               |
| 10     |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                |        |            |          |                                         |              |                                                |                                            |        |       |   |                            |                                               |
| DEF    | TH S                                                                    | SCALE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |        | I          | _ 4      | Á                                       | Ē            | older<br>ociates                               | •                                          |        | •     |   |                            | DGGED: DM<br>ECKED: JBH                       |

### RECORD OF BOREHOLE: BH106

SHEET 1 OF 1

BORING DATE: April 15, 2015

DATUM: -

LOCATION: 24+300 1.60 m Rt of C/L

|        | P             | -                            | SOIL PROFILE                                                                   | 1.           | 1              | 57     | MPL  |            | RESIST           | ANCE, BL | ows | ON<br>/0.3m      |              | HYDRA    | k, cm/s |   |        |                        | μβ                         | PIEZOMETER                      |
|--------|---------------|------------------------------|--------------------------------------------------------------------------------|--------------|----------------|--------|------|------------|------------------|----------|-----|------------------|--------------|----------|---------|---|--------|------------------------|----------------------------|---------------------------------|
| METRES | BORING METHOD |                              |                                                                                | STRATA PLOT  |                | К      |      | BLOWS/0.3m | 20               |          |     | 1                | 0            | 10       |         |   | 1      | 10 <sup>-3</sup> ⊥     | ADDITIONAL<br>LAB. TESTING | OR<br>STANDPIPE<br>INSTALLATION |
| ME     | SING          |                              | DESCRIPTION                                                                    | ATA I        | ELEV.          | NUMBER | түре | WS/(       | SHEAR<br>Cu, kPa | STRENG   | TH  | natV.+<br>remV.⊕ | U - 🛈        |          | ATER CO |   |        |                        | B. T                       |                                 |
|        | BOF           |                              |                                                                                | STR          | (m)            | N      |      | BLO        | 20               | ) 40     |     | Pocket           | Pen - 🔳<br>0 | Wp<br>1( | 2       | 0 | NP - N | WI<br>on-Plastic<br>40 |                            |                                 |
|        |               | $\uparrow$                   | Ground Surface                                                                 |              | 227.16         |        |      |            |                  |          |     |                  |              |          |         |   |        |                        |                            |                                 |
| 0      |               |                              |                                                                                |              | > 0.03         | 1      | GS   |            |                  |          |     |                  |              |          |         |   |        |                        |                            |                                 |
|        |               | Ν                            | FILL-(SW-SM) SAND and GRAVEL, crushed, some silt; brown; (BASE),               | $\mathbb{X}$ | 0.15           | 2      | GS   |            |                  |          |     |                  |              |          |         |   |        |                        |                            |                                 |
|        |               | ľ                            | non-cohesive, moist, compact                                                   | $\otimes$    | 226.67<br>0.49 |        |      |            |                  |          |     |                  |              |          |         |   |        |                        |                            |                                 |
|        |               |                              | brown; (SUBBASE), non-cohesive,                                                |              | 3              |        |      |            |                  |          |     |                  |              |          |         |   |        |                        |                            |                                 |
| 1      |               | ľ                            | FILL-(ML/SM) SILT and SAND, trace sub-rounded to sub-angular gravel,           | ' 🕅          |                | 3      | SS   | 14         |                  |          |     |                  |              |          | a       |   |        |                        |                            |                                 |
|        |               |                              | sub-rounded to sub-angular gravel,<br>some clay, some organics; brown to       |              | Ś              |        |      |            |                  |          |     |                  |              |          |         |   |        |                        |                            |                                 |
|        |               | <u>B</u>                     | black; non-cohesive, moist, compact                                            | XX           | 225.79         |        |      |            |                  |          |     |                  |              |          |         |   |        |                        |                            |                                 |
|        |               | ampli                        | (ML/SM) SILT and SAND, trace sub-rounded to sub-angular gravel,                |              | 3              |        |      |            |                  |          |     |                  |              |          |         |   |        |                        |                            |                                 |
|        |               | SPTS                         | some clay; brown, oxidation staining;<br>(TILL), non-cohesive, moist, dense to |              |                | 4      | SS   | 50         |                  |          |     |                  |              | 0        |         |   |        |                        |                            |                                 |
| 2      | M 45[         | with S                       | vey dense                                                                      |              |                |        |      |            |                  |          |     |                  |              |          |         |   |        |                        |                            |                                 |
|        | d CE          | nger                         |                                                                                |              |                |        |      |            |                  |          |     |                  |              |          |         |   |        |                        |                            |                                 |
|        | lounte        | Stem Auger with SPT Sampling | Boulders and/or cobbles<br>inferred from auger grinding at                     | H            | 1              | _5_    | 55   | 50/7       | 76mm             |          |     |                  |              | 0        |         |   |        |                        |                            |                                 |
|        |               |                              | 2.29 mbgs                                                                      |              | ,              |        |      |            |                  |          |     |                  |              |          |         |   |        |                        |                            |                                 |
|        | Ē             | 50 mm O.D. Solid             |                                                                                |              |                |        |      |            |                  |          |     |                  |              |          |         |   |        |                        |                            |                                 |
| 3      |               | e l                          | Light brown; below 3.05 mbgs                                                   |              |                | 6      | SS   | 50/1       | 127mm            |          |     |                  |              | 0        |         |   |        |                        |                            |                                 |
|        |               | 1501                         |                                                                                |              |                |        |      |            |                  |          |     |                  |              |          |         |   |        |                        |                            |                                 |
|        |               |                              |                                                                                |              | 1              |        |      |            |                  |          |     |                  |              |          |         |   |        |                        |                            |                                 |
|        |               |                              |                                                                                |              |                |        |      |            |                  |          |     |                  |              |          |         |   |        |                        |                            |                                 |
| 4      |               |                              |                                                                                |              |                | 7      | SS   | 50/1       | 127mm            |          |     |                  |              | 0        |         |   |        |                        |                            |                                 |
|        |               |                              |                                                                                |              |                |        |      |            |                  |          |     |                  |              |          |         |   |        |                        |                            |                                 |
|        |               |                              |                                                                                |              | 1              |        |      |            |                  |          |     |                  |              |          |         |   |        |                        |                            |                                 |
|        |               |                              | Wet; below 4.57 mbgs                                                           |              | 222.46         | 8      | SS   | 50/1       | 127mm            |          |     |                  |              |          | C       |   |        |                        |                            |                                 |
| Ē      |               |                              | End of Borehole.                                                               |              | 4.70           |        |      |            |                  |          |     |                  |              | Î        | 5       |   |        |                        |                            |                                 |
| 5      |               |                              |                                                                                |              |                |        |      |            |                  |          |     |                  |              |          |         |   |        |                        |                            |                                 |
|        |               |                              | NOTE:                                                                          |              |                |        |      |            |                  |          |     |                  |              |          |         |   |        |                        |                            |                                 |
|        |               |                              | 1. Free water measured at 3.70 mbgs in open borehole upon                      |              |                |        |      |            |                  |          |     |                  |              |          |         |   |        |                        |                            |                                 |
|        |               |                              | completion of drilling.<br>2. Borehole caved to 3.85                           |              |                |        |      |            |                  |          |     |                  |              |          |         |   |        |                        |                            |                                 |
|        |               |                              | mbgs upon completion of<br>drilling.                                           |              |                |        |      |            |                  |          |     |                  |              |          |         |   |        |                        |                            |                                 |
| 6      |               |                              | C .                                                                            |              |                |        |      |            |                  |          |     |                  |              |          |         |   |        |                        |                            |                                 |
|        |               |                              |                                                                                |              |                |        |      |            |                  |          |     |                  |              |          |         |   |        |                        |                            |                                 |
|        |               |                              |                                                                                |              |                |        |      |            |                  |          |     |                  |              |          |         |   |        |                        |                            |                                 |
|        |               |                              |                                                                                |              |                |        |      |            |                  |          |     |                  |              |          |         |   |        |                        |                            |                                 |
| 7      |               |                              |                                                                                |              |                |        |      |            |                  |          |     |                  |              |          |         |   |        |                        |                            |                                 |
|        |               |                              |                                                                                |              |                |        |      |            |                  |          |     |                  |              |          |         |   |        |                        |                            |                                 |
|        |               |                              |                                                                                |              |                |        |      |            |                  |          |     |                  |              |          |         |   |        |                        |                            |                                 |
|        |               |                              |                                                                                |              |                |        |      |            |                  |          |     |                  |              |          |         |   |        |                        |                            |                                 |
|        |               |                              |                                                                                |              |                |        |      |            |                  |          |     |                  |              |          |         |   |        |                        |                            |                                 |
| 8      |               |                              |                                                                                |              |                |        |      |            |                  |          |     |                  |              |          |         |   |        |                        |                            |                                 |
|        |               |                              |                                                                                |              |                |        |      |            |                  |          |     |                  |              |          |         |   |        |                        |                            |                                 |
|        |               |                              |                                                                                |              |                |        |      |            |                  |          |     |                  |              |          |         |   |        |                        |                            |                                 |
|        |               |                              |                                                                                |              |                |        |      |            |                  |          |     |                  |              |          |         |   |        |                        |                            |                                 |
| 9      |               |                              |                                                                                |              |                |        |      |            |                  |          |     |                  |              |          |         |   |        |                        |                            |                                 |
| Ĩ      |               |                              |                                                                                |              |                |        |      |            |                  |          |     |                  |              |          |         |   |        |                        |                            |                                 |
|        |               |                              |                                                                                |              |                |        |      |            |                  |          |     |                  |              |          |         |   |        |                        |                            |                                 |
|        |               |                              |                                                                                |              |                |        |      |            |                  |          |     |                  |              |          |         |   |        |                        |                            |                                 |
|        |               |                              |                                                                                |              |                |        |      |            |                  |          |     |                  |              |          |         |   |        |                        |                            |                                 |
| 10     |               |                              |                                                                                |              |                |        |      |            |                  |          |     |                  |              |          |         |   |        |                        |                            |                                 |
|        |               |                              |                                                                                |              |                |        |      |            |                  |          |     |                  |              |          |         |   |        |                        |                            |                                 |
|        |               |                              |                                                                                |              | •              |        |      |            |                  |          |     |                  |              |          |         |   | 1      | -1                     |                            |                                 |
| DEF    | ΡΤŀ           | 1.50                         | ALE                                                                            |              |                |        |      |            |                  |          | 1   | Golde<br>Socia   |              |          |         |   |        |                        | 10                         | GGED: DM                        |

# RECORD OF BOREHOLE: BH107

SHEET 1 OF 1

LOCATION: 24+800 1.50 m Lt of C/L

BORING DATE: April 14, 2015

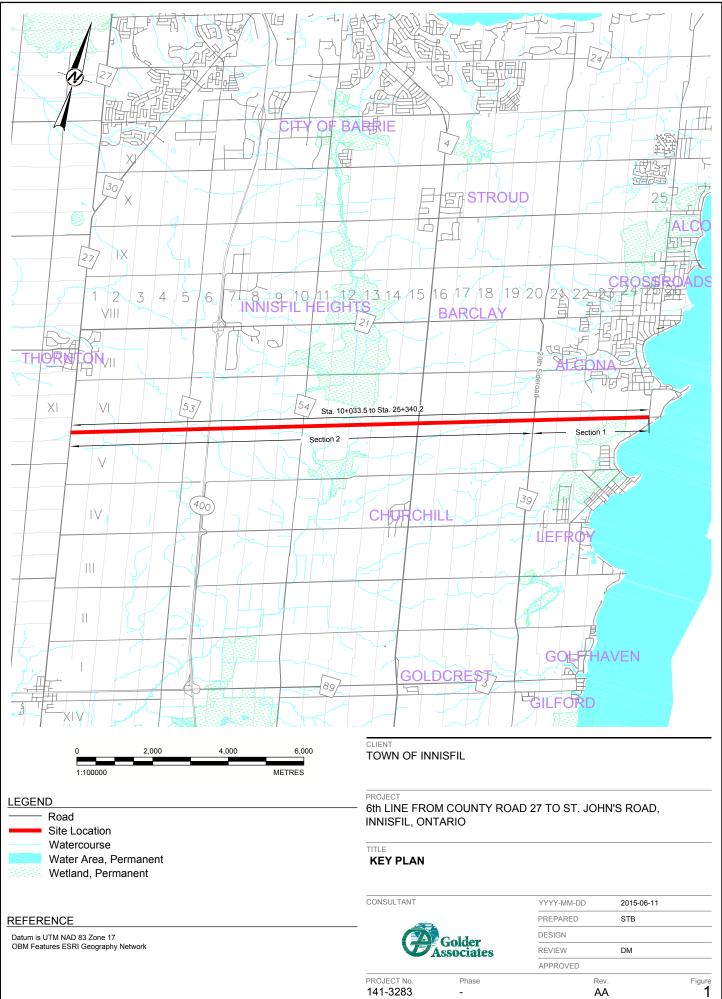
DATUM: -

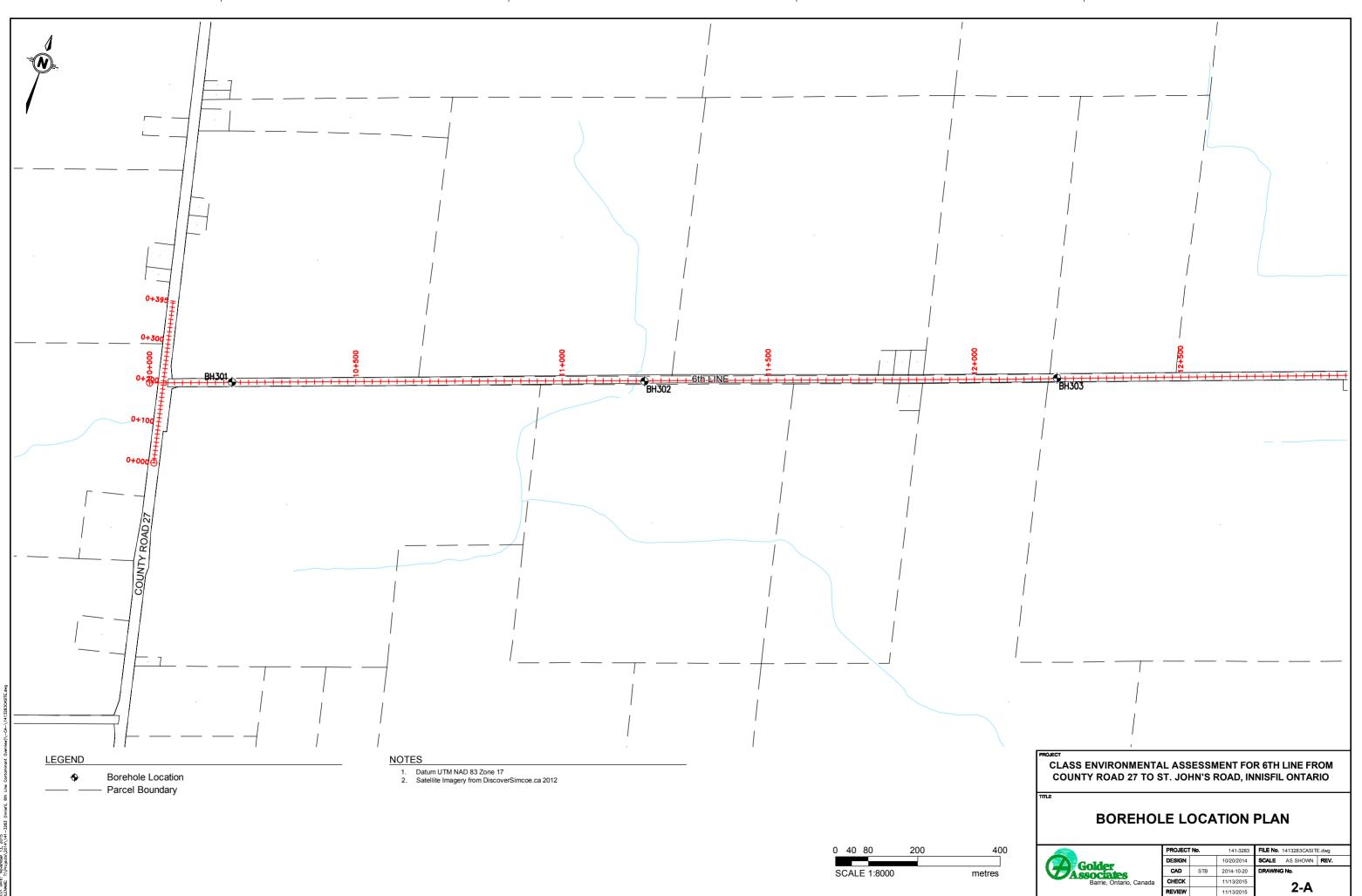
SPT Hammer: Mass, 140lbs.; DROP, 30in.

|        | JOH-                  |                                                | SOIL PROFILE                                                                | L            | 1              | SAI      | MPL  |            | RESIST           | IC PENE<br>ANCE, B | LOWS | 0.3m             | L             |                  | :m/s             |         |         | T                      | RGA                        | PIEZOMETER<br>OR                              |
|--------|-----------------------|------------------------------------------------|-----------------------------------------------------------------------------|--------------|----------------|----------|------|------------|------------------|--------------------|------|------------------|---------------|------------------|------------------|---------|---------|------------------------|----------------------------|-----------------------------------------------|
| MEIKES | BORING METHOD         |                                                |                                                                             | STRATA PLOT  | ELEV.          | ER       |      | BLOWS/0.3m | 20               |                    |      |                  | 80            | 10 <sup>-6</sup> | 10 <sup>-5</sup> | 10<br>1 |         | 10 <sup>-3</sup> L     | ADDITIONAL<br>LAB. TESTING | PIEZOMETER<br>OR<br>STANDPIPE<br>INSTALLATION |
| ΔĽ     | SING                  |                                                | DESCRIPTION                                                                 | ATA          | DEPTH          | NUMBER   | ТҮРЕ | /S/MC      | SHEAR<br>Cu, kPa | STRENG             | TH I | natV.+<br>remV.⊕ | U - 🛈         |                  | R CONT           |         |         |                        | ADDI<br>AB. T              |                                               |
|        | D B O                 |                                                |                                                                             | STR          | (m)            | z        |      | BLC        | 20               | 40                 | (    | Pocket           | Pen - 🔳<br>30 | 10 vvp           | 20               | 1<br>30 | NP - No | WI<br>on-Plastic<br>40 | ~ ]                        |                                               |
| 0      | _                     |                                                | Ground Surface                                                              | İ            | 225.67         |          |      |            |                  |                    |      |                  |               |                  |                  |         |         |                        |                            |                                               |
| 5      | ٦                     | T                                              | SURFACE TREAMENT<br>FILL-(SW-SM) SAND and GRAVEL,                           |              | 0.03           | 1        |      |            |                  |                    |      |                  |               |                  |                  |         |         |                        |                            |                                               |
|        |                       |                                                | crushed, some silt; brown; (BASE),                                          | $\mathbb{R}$ | 0.27           |          |      |            |                  |                    |      |                  |               |                  |                  |         |         |                        |                            |                                               |
|        |                       | ľ                                              | non-cohesive, moist, compact<br>FILL-(SM) gravelley SILTY SAND;             | / 🕅          | }              |          |      |            |                  |                    |      |                  |               |                  |                  |         |         |                        |                            |                                               |
|        |                       |                                                | brown; (SUBBASE), non-cohesive,                                             |              | 224.97<br>0.70 | <u> </u> |      |            |                  |                    |      |                  |               |                  |                  |         |         |                        |                            |                                               |
| 1      |                       | ľ                                              | FILL-(ML/SM) SILT and SAND, trace<br>rounded to sub-rounded gravel, some    | / 🕅          | 3              | 1        | SS   | 17         |                  |                    |      |                  |               |                  | 6                |         |         |                        |                            |                                               |
|        |                       |                                                | rounded to sub-rounded gravel, some clay, some organics; grey to black;     |              | 8              |          |      |            |                  |                    |      |                  |               |                  |                  |         |         |                        |                            |                                               |
|        |                       |                                                | non-cohesive, moist, compact                                                | Æ            | 224.30         |          |      |            |                  |                    |      |                  |               |                  |                  |         |         |                        |                            |                                               |
|        |                       | mplin                                          | (ML/SM) SILT and SAND, trace to some sub-rounded gravel, some clay;         |              |                |          |      |            |                  |                    |      |                  |               |                  |                  |         |         |                        |                            |                                               |
|        |                       | T Sa                                           | light brown, oxidation staining; (TILL),<br>non-cohesive, moist, very dense |              |                | 2        | SS   | 53         |                  |                    |      |                  |               | 0                |                  |         |         |                        |                            |                                               |
| 2      | 45D                   | th SP                                          | horeonesive, moist, very dense                                              |              |                |          |      |            |                  |                    |      |                  |               |                  |                  |         |         |                        |                            |                                               |
|        | Truck Mounted CEM 45D | ger wi                                         |                                                                             |              |                |          |      |            |                  |                    |      |                  |               |                  |                  |         |         |                        |                            |                                               |
|        | unted                 | m Au                                           |                                                                             |              |                | 3        | SS   | 50/1       | 27mm             |                    |      |                  |               | 0                |                  |         |         |                        |                            |                                               |
|        | × Wo                  | d Ste                                          |                                                                             |              |                |          |      |            |                  |                    |      |                  |               |                  |                  |         |         |                        |                            |                                               |
|        | Truc                  | . Soli                                         |                                                                             |              |                |          |      |            |                  |                    |      |                  |               |                  |                  |         |         |                        |                            |                                               |
| 3      |                       | 150 mm O.D. Solid Stem Auger with SPT Sampling | Grey; below 3.05 mbgs                                                       |              | ]              | 4        | SS   | 50/1       | 27mm             |                    |      |                  |               | 0                |                  |         |         |                        |                            |                                               |
|        |                       | 50 m                                           |                                                                             |              |                |          |      |            |                  |                    |      |                  |               |                  |                  |         |         |                        |                            |                                               |
|        |                       | -                                              |                                                                             |              | 1              |          |      |            |                  |                    |      |                  |               |                  |                  |         |         |                        |                            |                                               |
|        |                       |                                                |                                                                             |              |                |          |      |            |                  |                    |      |                  |               |                  |                  |         |         |                        |                            |                                               |
| 4      |                       |                                                |                                                                             | XI           | ]              | 5        | SS   | 50/1       | 02mm             |                    |      |                  |               | 0                |                  |         |         |                        |                            |                                               |
| -      |                       |                                                |                                                                             |              |                |          |      |            |                  |                    |      |                  |               |                  |                  |         |         |                        |                            |                                               |
|        |                       |                                                |                                                                             |              | 1              |          |      |            |                  |                    |      |                  |               |                  |                  |         |         |                        |                            |                                               |
|        |                       |                                                |                                                                             |              |                |          |      |            |                  |                    |      |                  |               |                  |                  |         |         |                        |                            |                                               |
|        |                       |                                                |                                                                             |              | 220.84         | 6        | SS   | 50/1       | 02mm             |                    |      |                  |               | 0                |                  |         |         |                        |                            |                                               |
| 5      |                       |                                                | End of Borehole.                                                            |              | 4.83           |          |      |            |                  |                    |      |                  |               |                  |                  |         |         |                        |                            |                                               |
|        |                       |                                                | NOTE:                                                                       |              |                |          |      |            |                  |                    |      |                  |               |                  |                  |         |         |                        |                            |                                               |
|        |                       |                                                | 1. Free water not encountered<br>in open borehole upon                      |              |                |          |      |            |                  |                    |      |                  |               |                  |                  |         |         |                        |                            |                                               |
|        |                       |                                                | completion of drilling.<br>2. No cave of borehole upon                      |              |                |          |      |            |                  |                    |      |                  |               |                  |                  |         |         |                        |                            |                                               |
|        |                       |                                                | completion of drilling.                                                     |              |                |          |      |            |                  |                    |      |                  |               |                  |                  |         |         |                        |                            |                                               |
| 6      |                       |                                                |                                                                             |              |                |          |      |            |                  |                    |      |                  |               |                  |                  |         |         |                        |                            |                                               |
|        |                       |                                                |                                                                             |              |                |          |      |            |                  |                    |      |                  |               |                  |                  |         |         |                        |                            |                                               |
|        |                       |                                                |                                                                             |              |                |          |      |            |                  |                    |      |                  |               |                  |                  |         |         |                        |                            |                                               |
|        |                       |                                                |                                                                             |              |                |          |      |            |                  |                    |      |                  |               |                  |                  |         |         |                        |                            |                                               |
|        |                       |                                                |                                                                             |              |                |          |      |            |                  |                    |      |                  |               |                  |                  |         |         |                        |                            |                                               |
| 7      |                       |                                                |                                                                             |              |                |          |      |            |                  |                    |      |                  |               |                  |                  |         |         |                        |                            |                                               |
|        |                       |                                                |                                                                             |              |                |          |      |            |                  |                    |      |                  |               |                  |                  |         |         |                        |                            |                                               |
|        |                       |                                                |                                                                             |              |                |          |      |            |                  |                    |      |                  |               |                  |                  |         |         |                        |                            |                                               |
|        |                       |                                                |                                                                             |              |                |          |      |            |                  |                    |      |                  |               |                  |                  |         |         |                        |                            |                                               |
| 8      |                       |                                                |                                                                             |              |                |          |      |            |                  |                    |      |                  |               |                  |                  |         |         |                        |                            |                                               |
|        |                       |                                                |                                                                             |              |                |          |      |            |                  |                    |      |                  |               |                  |                  |         |         |                        |                            |                                               |
|        |                       |                                                |                                                                             |              |                |          |      |            |                  |                    |      |                  |               |                  |                  |         |         |                        |                            |                                               |
|        |                       |                                                |                                                                             |              |                |          |      |            |                  |                    |      |                  |               |                  |                  |         |         |                        |                            |                                               |
|        |                       |                                                |                                                                             |              |                |          |      |            |                  |                    |      |                  |               |                  |                  |         |         |                        |                            |                                               |
| 9      |                       |                                                |                                                                             |              |                |          |      |            |                  |                    |      |                  |               |                  |                  |         |         |                        |                            |                                               |
|        |                       |                                                |                                                                             |              |                |          |      |            |                  |                    |      |                  |               |                  |                  |         |         |                        |                            |                                               |
|        |                       |                                                |                                                                             |              |                |          |      |            |                  |                    |      |                  |               |                  |                  |         |         |                        |                            |                                               |
|        |                       |                                                |                                                                             |              |                |          |      |            |                  |                    |      |                  |               |                  |                  |         |         |                        |                            |                                               |
|        |                       |                                                |                                                                             |              |                |          |      |            |                  |                    |      |                  |               |                  |                  |         |         |                        |                            |                                               |
| 10     |                       |                                                |                                                                             |              |                |          |      |            |                  |                    |      |                  |               |                  |                  |         |         |                        |                            |                                               |
|        |                       |                                                |                                                                             |              |                |          |      |            |                  |                    |      |                  |               |                  |                  |         |         |                        |                            |                                               |
| JEr    | ᆎ                     | 1.50                                           | CALE                                                                        |              |                |          |      |            |                  | á                  | F.   | Folde<br>socia   |               |                  |                  |         |         |                        | 10                         | GGED: DM                                      |
|        |                       |                                                |                                                                             |              |                |          |      |            |                  | ( 7                |      | iolde            | r             |                  |                  |         |         |                        | LC                         | SOLD. DIVI                                    |

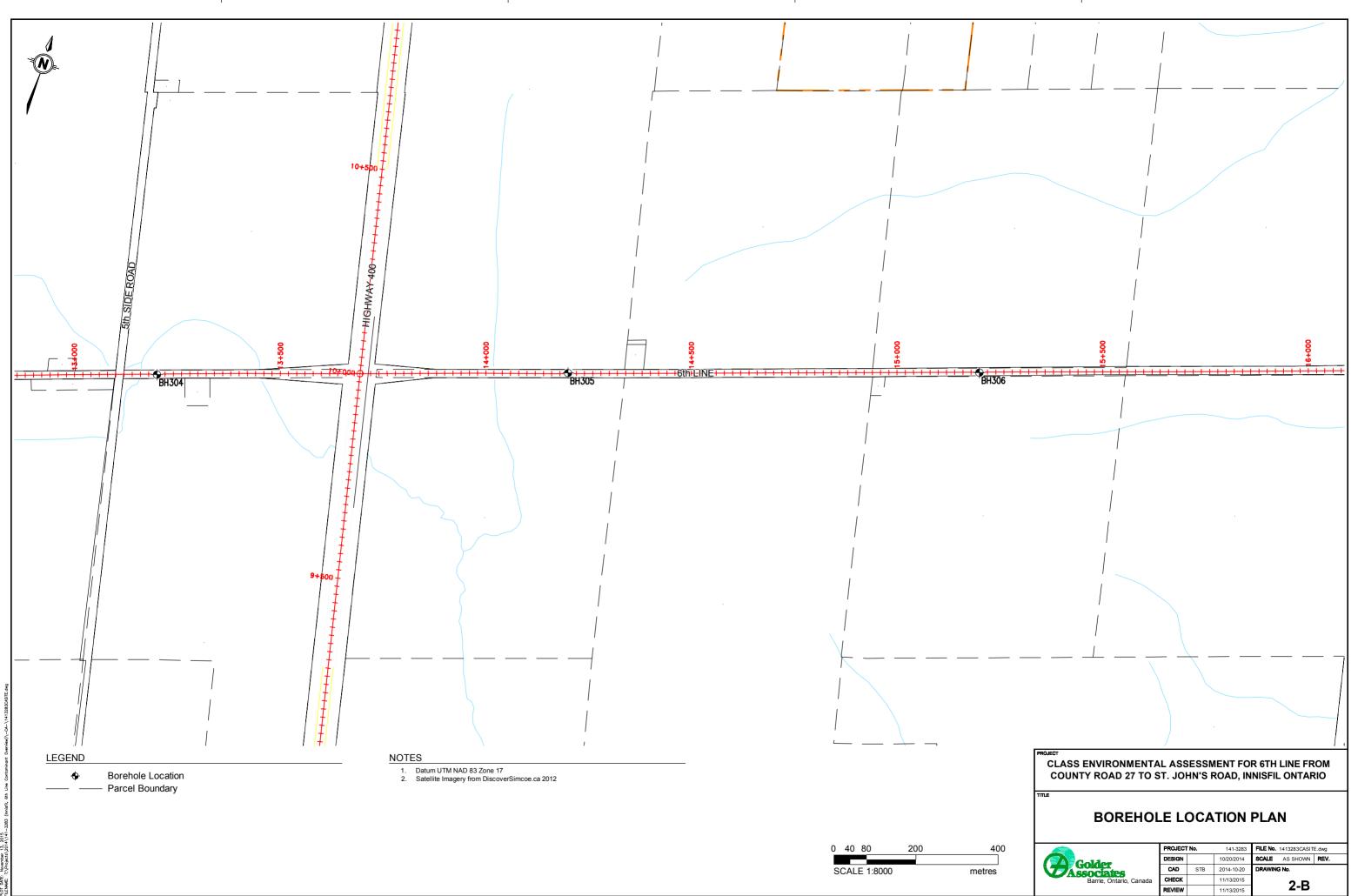
### RECORD OF BOREHOLE: BH108

DATUM: -

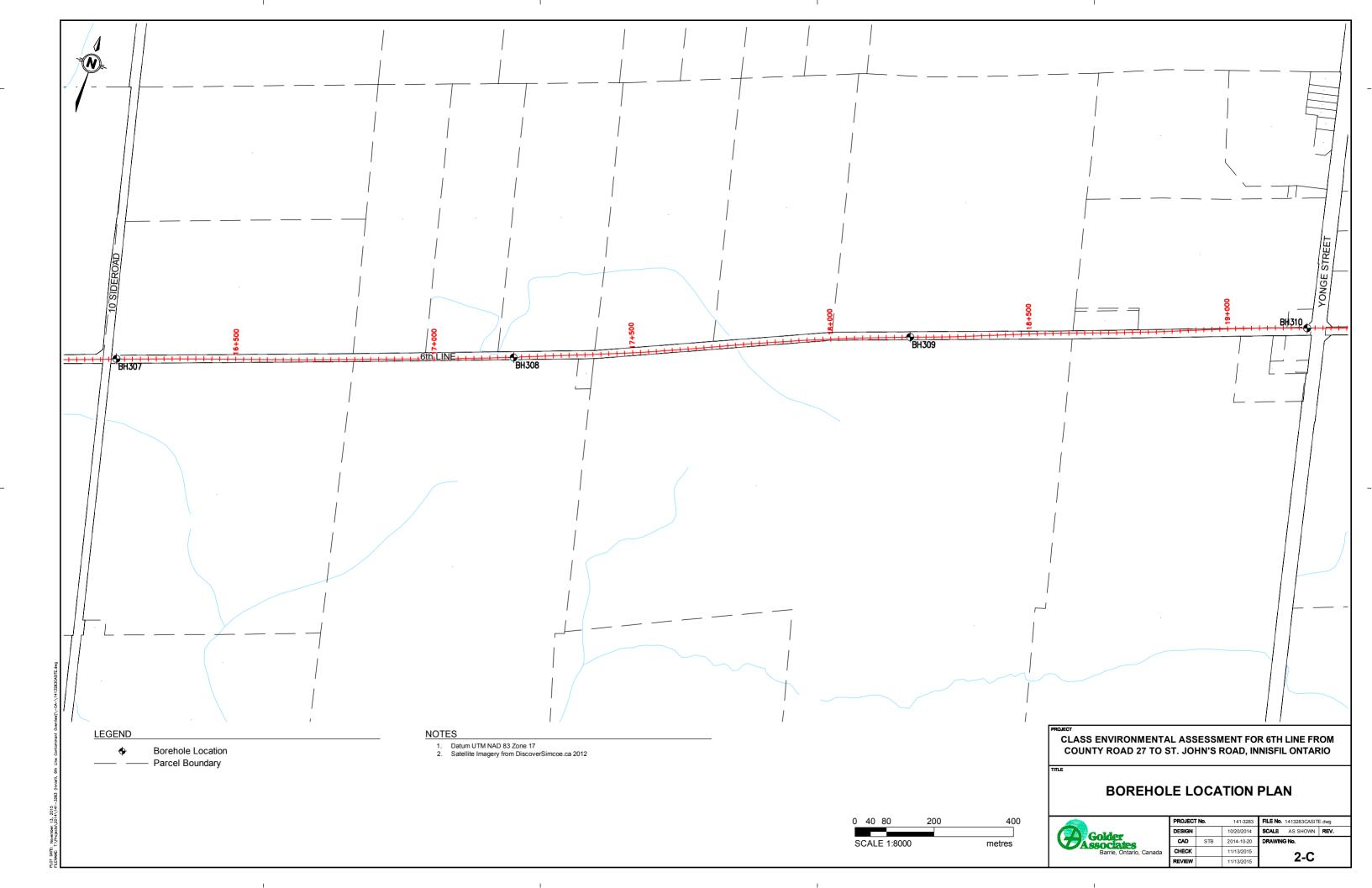

SHEET 1 OF 1

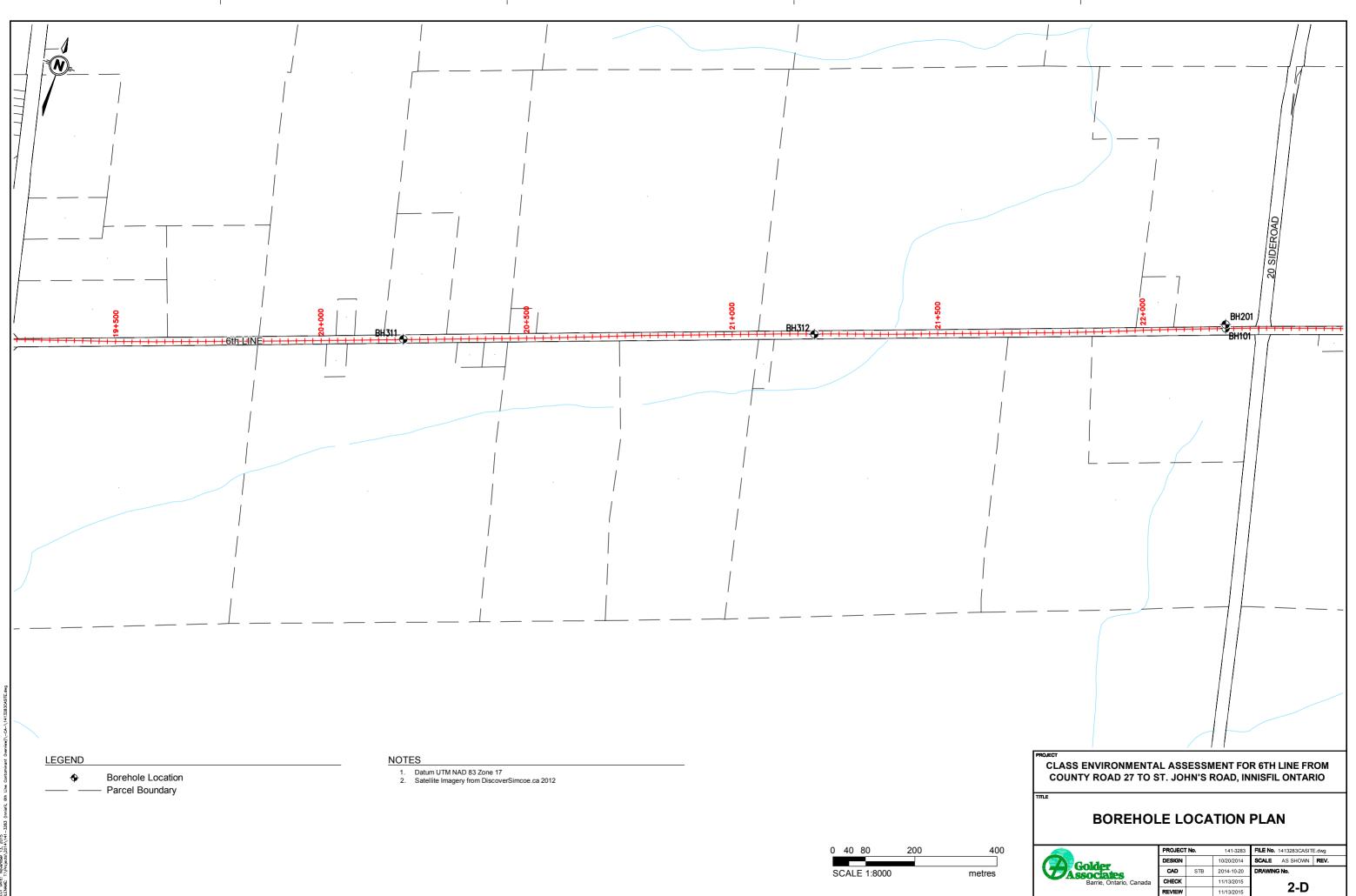

LOCATION: 25+300 1.60 m Rt of C/L

BORING DATE: April 15, 2015

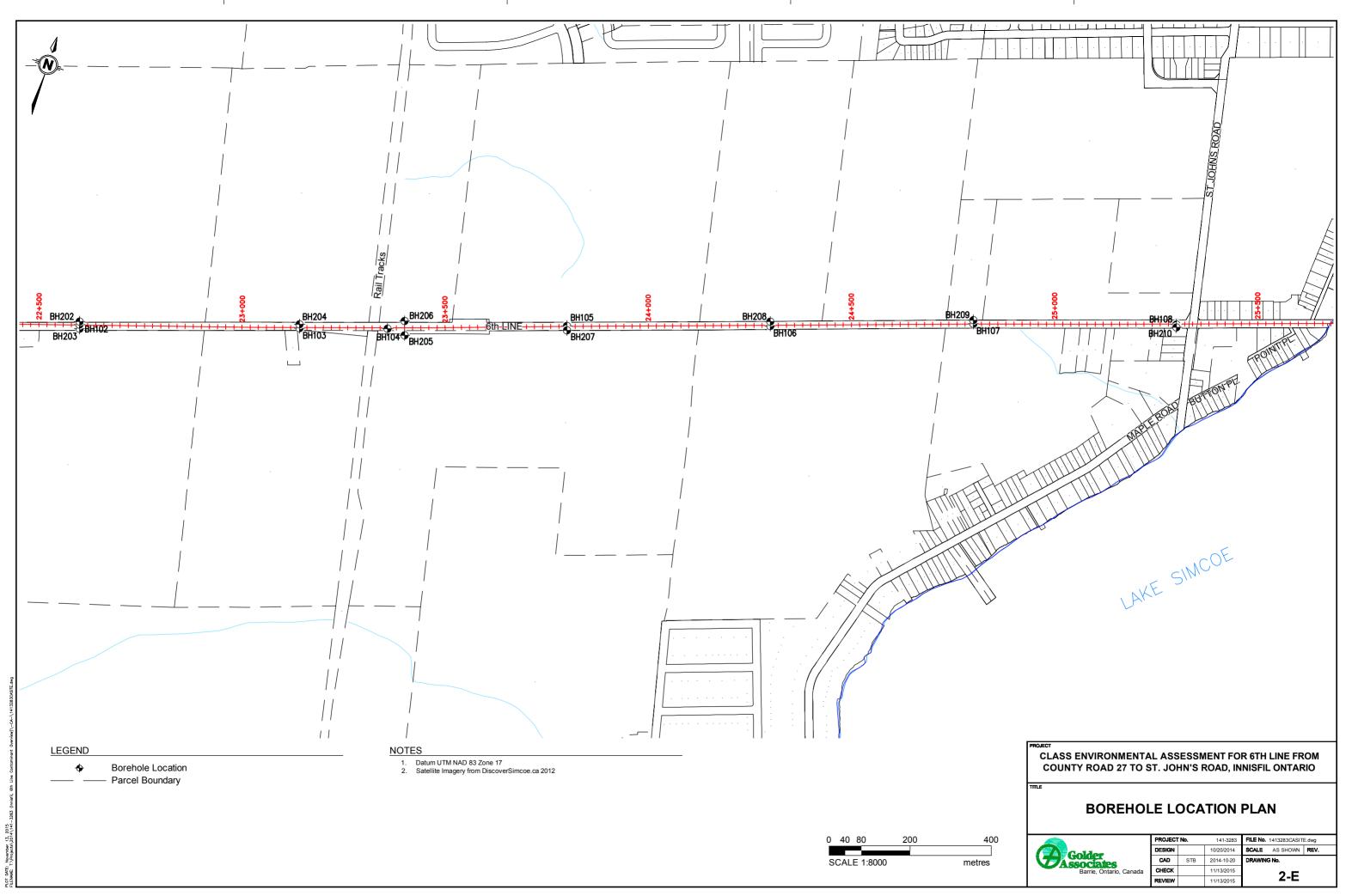

| SPT Hammer: Mass.        | 140lbs.; DROP, 30in.    |
|--------------------------|-------------------------|
| 01 1 1 101111101. 10033, | 140103., DIXOI , 30111. |

| L<br>م | THO                   |                                    | SOIL PROFILE                                                                                                                                                                                                                                                                                                                                                                                        | _ ⊢         | 1                              | SAI      | MPLI           |            |                           | PENETRA<br>CE, BLOW |                   |                                       |    | , cm/s |    |                                                    | NG<br>NG                   | PIEZOMETER                      |
|--------|-----------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------|----------|----------------|------------|---------------------------|---------------------|-------------------|---------------------------------------|----|--------|----|----------------------------------------------------|----------------------------|---------------------------------|
| METRES | BORING METHOD         |                                    | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                         | STRATA PLOT | ELEV.<br>DEPTH<br>(m)          | NUMBER   | түре           | BLOWS/0.3m | 20<br>SHEAR ST<br>Cu, kPa |                     | rem V. 9<br>Pocke | 80<br>+ Q - ●<br>Đ U - ●<br>t Pen - ■ | Wp |        |    | 10 <sup>3</sup><br>CENT<br>WI<br>Non-Plastic<br>40 | ADDITIONAL<br>LAB. TESTING | OR<br>STANDPIPE<br>INSTALLATION |
| -      |                       | -                                  | Ground Surface                                                                                                                                                                                                                                                                                                                                                                                      | - IS        | 222.49                         | $\vdash$ |                | ш          | 20                        | 40                  | 60                | 80                                    | 10 | 20     | 30 | 40                                                 |                            |                                 |
| 0 -    |                       | pling                              | SURFACE TREAMENT<br>FILL-(SW-SM) SAND and GRAVEL,<br>crushed, some silt; brown; (BASE),<br>non-cohesive, moist, compact<br>FILL-(SM) gravelley SILTY SAND;<br>brown; (SUBBASE), non-cohesive,<br>moist, compact                                                                                                                                                                                     |             | 0.03<br>0.15<br>222.08<br>0.41 | 2        | GS<br>GS<br>SS | 40         |                           |                     |                   |                                       | 0  |        |    |                                                    | м                          | GR=38% SA=54%<br>FINES=8%       |
| 1      | Truck Mounted CEM 45D | Solid Stem Auger with SPT Sampling | (ML/SM) SILT and SAND, trace to<br>some sub-rounded to sub-angular<br>gravel, some clay; light brown,<br>oxidation staining; (TILL),<br>non-cohesive, moist, dense to very<br>dense                                                                                                                                                                                                                 |             |                                | 4        | SS             |            | 127mm                     |                     |                   |                                       | 0  |        |    |                                                    |                            |                                 |
| 2      |                       | 150 mm O.D. Solid Ste              | Boulders and/or cobbles<br>inferred from auger grinding at<br>2.13 mbgs                                                                                                                                                                                                                                                                                                                             |             |                                | 5        | SS             | 50/        | 102mm                     |                     |                   |                                       | 0  |        |    |                                                    |                            |                                 |
| 3      |                       | -                                  | Suspected boulder and<br>cobbles at 2.74 mbgs                                                                                                                                                                                                                                                                                                                                                       |             | 218.98                         | 6        | SS             | 50/        | 102mm                     |                     |                   |                                       | 0  |        |    |                                                    |                            |                                 |
| 4<br>5 |                       |                                    | End of Borehole.<br>NOTE:<br>1. Free water not encountered<br>in open borehole upon<br>completion of drilling.<br>2. No cave of borehole upon<br>completion of drilling.<br>3. Auger Refusal on suspected<br>boulders and cobbles at 2.74<br>mbgs. Drilled second hole and<br>vontinued sampling 2 m east.<br>3. Auger Refusal on suspected<br>boulders and cobbles at 3.51<br>mbgs in second hole. |             | 3.51                           |          |                |            |                           |                     |                   |                                       |    |        |    |                                                    |                            |                                 |
| 7      |                       |                                    |                                                                                                                                                                                                                                                                                                                                                                                                     |             |                                |          |                |            |                           |                     |                   |                                       |    |        |    |                                                    |                            |                                 |
| 8      |                       |                                    |                                                                                                                                                                                                                                                                                                                                                                                                     |             |                                |          |                |            |                           |                     |                   |                                       |    |        |    |                                                    |                            |                                 |
| 9      |                       |                                    |                                                                                                                                                                                                                                                                                                                                                                                                     |             |                                |          |                |            |                           |                     |                   |                                       |    |        |    |                                                    |                            |                                 |
| 10     |                       |                                    |                                                                                                                                                                                                                                                                                                                                                                                                     |             |                                |          |                |            |                           |                     |                   |                                       |    |        |    |                                                    |                            |                                 |




DATE: November 13, 2015 Mar. TA Distants Social 2017




ATE: November 13, 2015 Jer. TADeviceted 2014/141\_2083 (Josiefil 6th Line Cont.





.



# CLASS ENVIRONMENTAL ASSESSMENT FOR 6<sup>th</sup> LINE, INNISFIL, ONTARIO

**FIGURE 3A** 



 $6^{th}$  Line ~Sta. 14+500, looking east (up chainage).



6<sup>th</sup> Line ~Sta. 15+500, looking east (up chainage).

| Project No. | 14-13283   |                        | Taken by:   | JBH |
|-------------|------------|------------------------|-------------|-----|
| Photo Date: | July, 2015 | Golder Associates Ltd. | Checked By: | ACB |

# CLASS ENVIRONMENTAL ASSESSMENT FOR 6<sup>th</sup> LINE, INNISFIL, ONTARIO

**FIGURE 3B** 



6<sup>th</sup> Line ~Sta. 16+500, looking east (up chainage).

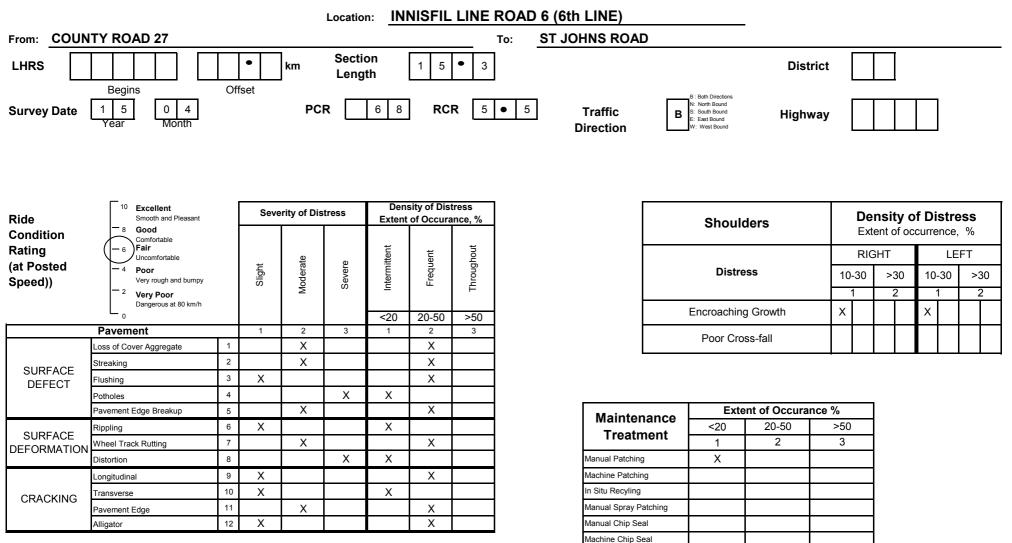


6<sup>th</sup> Line ~Sta. 17+500, looking east (up chainage).

| Project No. 14-13283 Taken by:                                                    | JBH |
|-----------------------------------------------------------------------------------|-----|
| Photo Date:         July, 2015         Golder Associates Ltd.         Checked By: | ACB |

# CLASS ENVIRONMENTAL ASSESSMENT FOR 6<sup>th</sup> LINE, INNISFIL, ONTARIO




6<sup>th</sup> Line ~Sta. 19+500, looking east (up chainage).



6<sup>th</sup> Line ~Sta. 22+500, looking east (up chainage).

| Project No. 14-13283 Taken by:                                                    | JBH |
|-----------------------------------------------------------------------------------|-----|
| Photo Date:         July, 2015         Golder Associates Ltd.         Checked By: | ACB |

## **Surface Treated Pavement Condition Evaluation Form**



Distress Comments (Items not covered above)

Moderate desitortion near intersection of 20th Sideroad

Other Comments (e.g. subsections, additional contracts)

Asphalt Sections at County Road 27, Hwy 400 Overpass, 5th Sideroad, Yonge Street, 20th Sideroad and St. John's Road

Evaluated by:

Fog Seal Manual Burn and Seal

John Hagan

## TABLE 1 RECORD OF PAVEMENT BOREHOLES - Section 1

1413283 Sheet 1 of 2

#### 6th Line from Side Road 20 to St. Johns Road, Innisfil, Ontario

|              |                                                                                          | BOREHOLE LOG                                                                                                                          | I           |                |               | LABC<br>Water | DRATORY TESTING                                         |  |
|--------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|---------------|---------------|---------------------------------------------------------|--|
|              |                                                                                          |                                                                                                                                       | Sample Dept | h Frost        | K Factor      | Content       |                                                         |  |
| Borehole No. | Depth (mm/m)                                                                             |                                                                                                                                       | (mm)        | Susceptibility | (Erodability) | (%)           | Gradation                                               |  |
| L1           |                                                                                          | 6th Line Innisfil                                                                                                                     |             | *              |               |               |                                                         |  |
| Location     | Station 22+200, offs                                                                     | set 1.2 m left of the centerline of 6th Line (WBL). Elevation: 263.86                                                                 |             |                |               |               |                                                         |  |
|              | 0 - 110                                                                                  | Asphalt                                                                                                                               |             |                |               |               |                                                         |  |
|              | 110 - 240                                                                                | Brown crushed SAND and GRAVEL, some silt, moist, compact (Granular Base)                                                              |             |                |               |               |                                                         |  |
| BH101        | 240 - 450                                                                                | Brown grvelly SILTY SAND, moist, compact (Granular Subbase)                                                                           | 250 - 45    | 0              |               |               |                                                         |  |
|              | 450 - 1.4                                                                                | Brown SILTY SAND, trace clay, moist to wet, compact (FILL)                                                                            | 760 - 1.2   |                |               | 25.1          |                                                         |  |
|              | 1.4 - 2.0                                                                                | Light brown SILT, trace sand, some clay, wet, compact                                                                                 | 1.5 - 2.    | ) HSFH         | 0.7           | 18.0          | Figure B3                                               |  |
| Location     |                                                                                          | set 1.3 m right of the centerline of 6th Line (EBL). Elevation: 253.30                                                                |             |                |               |               |                                                         |  |
|              | 0 - 30                                                                                   | PST                                                                                                                                   |             |                |               |               |                                                         |  |
|              | 30 - 100                                                                                 | Brown crushed SAND and GRAVEL, some silt, moist, compact (Granular Base)                                                              | 25 - 10     | 0              |               |               |                                                         |  |
| BH102        | 100 - 610                                                                                | Brown grvelly SILTY SAND, moist, compact (Granular Subbase)                                                                           | 300 - 60    | 0              |               | 4.6           | Figure B2, Unacceptable<br>Granular B Type 1, too silty |  |
|              | 610 - 1.4                                                                                | Brown SILTY SAND, trace gravel, some clay, moist, compact (FILL)                                                                      | 760 - 1.    | 2              |               | 7.4           |                                                         |  |
|              | 1.4 - 2.0                                                                                | Brown sandy SILTY CLAY, some gravel, w~PL, very stiff                                                                                 | 1.5 - 2.    | )              |               | 13.4          |                                                         |  |
| Location     | Station 23+142, offset 1.5 m left of the centerline of 6th Line (WBL). Elevation: 245.69 |                                                                                                                                       |             |                |               |               |                                                         |  |
|              | 0 - 25                                                                                   | PST                                                                                                                                   |             |                |               |               |                                                         |  |
| BH103        | 25 - 100                                                                                 | Brown crushed SAND and GRAVEL, some silt, moist, compact (Granular Base)                                                              |             |                |               |               |                                                         |  |
| DIII05       | 100 - 1.4                                                                                | Brown grvelly SILTY SAND, moist, compact (Granular Subbase)                                                                           | 760 - 1.    |                |               | 6.8           |                                                         |  |
|              | 1.4 - 2.0                                                                                | Brown to dark brown sandy SILTY CLAY, w>PL, stiff                                                                                     | 1.5 - 2.    | )              |               | 23.9          |                                                         |  |
| Location     |                                                                                          | set 1.5 m right of the centerline of 6th Line (EBL). Elevation: 249.21                                                                |             |                |               |               |                                                         |  |
|              | 0 - 25                                                                                   | PST                                                                                                                                   |             |                |               |               |                                                         |  |
| BH104        | 25 - 150                                                                                 | Brown crushed SAND and GRAVEL, some silt, moist, compact (Granular Base)                                                              | 25 - 15     | -              |               |               |                                                         |  |
| Dinto        | 150 - 530                                                                                | Brown grvelly SILTY SAND, moist, compact (Granular Subbase)                                                                           | 200 - 50    |                |               |               |                                                         |  |
|              | 530 - 2.0                                                                                | Brown sandy CLAYEY SILT, some gravel, w <pl, (fill)<="" hard="" td=""><td>760 - 1.</td><td>2</td><td></td><td>9.7</td><td></td></pl,> | 760 - 1.    | 2              |               | 9.7           |                                                         |  |
| Location     |                                                                                          | tet 1.5 m left of the centerline of Innisfil 6th Line (WBL). Elevation: 231.05                                                        | 1           |                | -             | i             | 1                                                       |  |
|              | 0 - 30                                                                                   | PST                                                                                                                                   |             |                |               |               |                                                         |  |
|              | 30 - 150                                                                                 | Brown crushed SAND and GRAVEL, some silt, moist, compact (Granular Base)                                                              |             |                |               |               |                                                         |  |
| BH105        | 150 - 570                                                                                | Brown grvelly SILTY SAND, moist, compact (Granular Subbase)                                                                           | 200 - 50    | -              |               |               |                                                         |  |
|              | 560 - 1.7                                                                                | Light brown to grey SILTY CLAY, trace gravel, some sand, w< PL, very stiff to hard                                                    | 760 - 1.    |                |               | 15.3          |                                                         |  |
|              | 1.7 - 2.0                                                                                | Light brown SILT and SAND, trace gravel, some clay, moist, very dense                                                                 | 1.7 - 1.    | 3              |               | 16.3          |                                                         |  |
| Location     |                                                                                          | tet 1.6 m right of the centerline of 6th Line (EBL). Elevation: 227.16                                                                | 1           |                |               | 1             |                                                         |  |
|              | 0 - 30                                                                                   | PST                                                                                                                                   |             | _              |               |               |                                                         |  |
|              | 30 - 150                                                                                 | Brown crushed SAND and GRAVEL, some silt, moist, compact (Granular Base)                                                              | 30 - 15     |                |               |               |                                                         |  |
| DUIOC        | 150 - 490                                                                                | Brown grvelly SILTY SAND, moist, compact (Granular Subbase)                                                                           | 150 - 48    | U              |               |               |                                                         |  |
| BH106        | 490 - 1.4                                                                                | Brown to black SILT and SAND, trace gravel, some clay, some organics, moist, compact (FILL)                                           | 760 - 1.    | 2              |               | 18.6          |                                                         |  |
|              | 1.4 - 2.0                                                                                | Brown SILT and SAND, trace gravel, some clay, occasional cobbles and boulders, moist, dense to very desne                             | 1.5 - 2.0   | )              |               | 9.1           |                                                         |  |

## TABLE 1 RECORD OF PAVEMENT BOREHOLES - Section 1

1413283 Sheet 2 of 2

#### 6th Line from Side Road 20 to St. Johns Road, Innisfil, Ontario

|                   |                                                                                               | BOREHOLE LOG                                                                                              |                      | LABORA         | FORY TEST     | TING             |                                                                       |  |  |
|-------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------|----------------|---------------|------------------|-----------------------------------------------------------------------|--|--|
|                   |                                                                                               |                                                                                                           | Somela Donth         | Frost          | K Factor      | Water<br>Content |                                                                       |  |  |
| Borehole No.      | Depth (mm/m)                                                                                  |                                                                                                           | Sample Depth<br>(mm) | Susceptibility | (Erodability) | (%)              | Gradation                                                             |  |  |
| 6th Line Innisfil |                                                                                               |                                                                                                           |                      |                |               |                  |                                                                       |  |  |
| Location          | Location Station 24+800, offset 1.5 m left of centerline of 6th Line (WBL). Elevation: 225.67 |                                                                                                           |                      |                |               |                  |                                                                       |  |  |
|                   | 0 - 30                                                                                        | PST                                                                                                       |                      |                |               |                  |                                                                       |  |  |
|                   | 30 - 270                                                                                      | Brown crushed SAND and GRAVEL, some silt, moist, compact (Granular Base)                                  |                      |                |               |                  |                                                                       |  |  |
| BH107             | 270 - 700                                                                                     | Brown grvelly SILTY SAND, moist, compact (Granular Subbase)                                               |                      |                |               |                  |                                                                       |  |  |
|                   | 700 - 1.4                                                                                     | Grey to black SILT and SAND, trace gravel, some clay, some organics, moist, compact (FILL)                | 760 - 1.2            |                |               | 20.2             |                                                                       |  |  |
|                   | 1.4 - 2.0                                                                                     | Light brown SILT and SAND, trace gravel, some clay, moist, very dense                                     | 1.5 - 2.0            |                |               | 7.9              |                                                                       |  |  |
| Location          | Station 25+300, offse                                                                         | et 1.6 m right of centerline of 6th Line (EBL). Elevation: 222.49                                         |                      |                |               |                  |                                                                       |  |  |
|                   | 0 - 25                                                                                        | PST                                                                                                       |                      |                |               |                  |                                                                       |  |  |
| BH108             | 25 - 150                                                                                      | Brown crushed SAND and GRAVEL, some silt, moist, compact (Granular Base)                                  | 30 - 150             |                |               | 4.2              | Figure B1, Unacceptable<br>Granular A, too fine on<br>multiple sieves |  |  |
|                   | 150 - 410                                                                                     | Brown grvelly SILTY SAND, moist, compact (Granular Subbase)                                               | 150 - 400            |                |               |                  | •                                                                     |  |  |
|                   | 410 - 2.0                                                                                     | Brown SILT and SAND, trace gravel, some clay, occasional cobbles and boulders, moist, dense to very desne | 760 - 1.2            |                |               | 8.4              |                                                                       |  |  |

Inputted by: <u>DM</u> Checked by: <u>JBH</u>

## TABLE 2 RECORD OF PAVEMENT BOREHOLES - Section 2

1413283 Sheet 1 of 2

#### 6th Line from County Road 27 to Side Road 20, Innisfil, Ontario

|              |                                                              | BOREHOLE LOG                                                                                 | 1                     |                |               |                  | RATORY TESTING          |
|--------------|--------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------|----------------|---------------|------------------|-------------------------|
|              |                                                              |                                                                                              | Sample Depth          | Frost          | K Factor      | Water<br>Content |                         |
| Borehole No. | Depth (mm/m)                                                 |                                                                                              | (mm)                  | Susceptibility | (Erodability) | (%)              | Gradation               |
|              |                                                              | 6th Line                                                                                     |                       |                |               |                  |                         |
| Location     | Station 10+200, offs                                         | set 1.5 m left of centerline of 6th Line (WBL)                                               |                       |                |               |                  |                         |
|              | 0 - 25                                                       | PST                                                                                          |                       |                |               |                  |                         |
|              | 55 - 140                                                     | Brown crushed SAND and GRAVEL, trace to some silt, moist, compact (Granular Base)            |                       |                |               |                  |                         |
| BH301        | 140 - 170                                                    | PST                                                                                          |                       |                |               |                  |                         |
|              | 170 - 440                                                    | Brown crushed SAND and GRAVEL, trace to some silt, moist, compact (Granular Base)            |                       |                |               |                  |                         |
|              | 440 - 700                                                    | Brown gravely SAND, some silt, moist compact (Granular Subbase)                              |                       |                |               |                  |                         |
| <b>*</b>     | 700 - 1.5                                                    | Grey sandy CLAYEY SILT, trace gravel, moist compact                                          |                       |                |               |                  |                         |
| Location     |                                                              | set 1.0 m right of cenerline of 6th Line (EBL)                                               |                       |                |               |                  |                         |
|              | 0 - 25                                                       | PST                                                                                          |                       |                |               |                  |                         |
|              | 25 - 140                                                     | Brown crushed SAND and GRAVEL, trace to some silt, moist, compact (Granular Base)            |                       |                |               |                  |                         |
|              | 140 - 165                                                    | PST                                                                                          |                       |                |               |                  | Figure B1, Unacceptable |
| BH302        | 165 - 320                                                    | Brown crushed SAND and GRAVEL, trace to some silt, moist, compact (Granular Base)            | 175 - 300             |                |               | 4.3              | Granular A, too fine on |
|              | 100 020                                                      |                                                                                              | 170 000               |                |               |                  | multiple sieves         |
|              | 320 - 640                                                    | Brown gravely SAND, some silt, moist compact (Granular Subbase)                              | 350 - 600             |                |               |                  | •                       |
|              | 640 - 1.5                                                    | Grey sandy CLAYEY SILT, trace gravel, moist compact                                          | 1 - 1.3               |                |               |                  |                         |
| Location     | Station 12+200, offs                                         | set 1.2 m left of centerline of 6th Line (WBL)                                               |                       |                |               |                  |                         |
|              | 0 - 25                                                       | PST                                                                                          |                       |                |               |                  |                         |
|              | 25 - 130                                                     | Brown crushed SAND and GRAVEL, trace to some silt, moist, compact (Granular Base)            |                       |                |               |                  |                         |
| BH303        | 130 - 155                                                    | PST                                                                                          |                       |                |               |                  |                         |
| DIIS05       | 155 - 300                                                    | Brown crushed SAND and GRAVEL, trace to some silt, moist, compact (Granular Base)            |                       |                |               |                  |                         |
|              | 300 - 670                                                    | Brown gravely SAND, some silt, moist compact (Granular Subbase)                              |                       |                |               |                  |                         |
|              | 670 - 1.5                                                    | Brown CLAYEY SILT and SAND, trace gravel, moist, compact                                     |                       |                |               |                  |                         |
| Location     |                                                              | set 1.5 m right of centerline of 6th Line (EBL)                                              | 1                     | 1              | 1             |                  |                         |
|              | 0 - 50                                                       | Asphalt                                                                                      |                       |                |               |                  |                         |
| BH304        | 50 - 260                                                     | Brown crushed SAND and GRAVEL, trace to some silt, moist, compact (Granular Base)            |                       |                |               |                  |                         |
|              | 260 - 560                                                    | Brown gravely SAND, some silt, moist compact (Granular Subbase)                              |                       |                |               |                  |                         |
| Lending      | 560 - 1.5                                                    | Brown CLAYEY SILT and SAND, trace gravel, moist, wet @ 900, compact                          |                       |                |               |                  |                         |
| Location     |                                                              | set 1.5 m left of centerline of 6th Line (WBL)                                               | 1                     |                | 1             |                  |                         |
|              | $\begin{array}{cccc} 0 & - & 25 \\ 25 & - & 200 \end{array}$ | Asphalt<br>Brown crushed SAND and GRAVEL, trace to some silt, moist, compact (Granular Base) | 25 - 200              |                |               |                  |                         |
|              | 200 - 900                                                    | Brown gravely SAND, some silt, moist compact (Granular Subbase)                              | 25 - 200<br>200 - 500 |                |               |                  |                         |
| BH305        | 200 - 900                                                    | Brown gravery SAND, some sitt, moist compact (Oranulai Subbase)                              | 200 - 300             |                |               |                  |                         |
|              | 900 - 1.2                                                    | Dark Brown to Black ORGANIC SILT and SAND, trace clay, free water @ 900, saturated, loose    | 900 - 1.2             |                |               |                  |                         |
|              | 1.2 - 1.5                                                    | Grey SILT and SAND, trace clay, trace gravel, wet, comp                                      | 1.2 - 1.5             |                |               |                  |                         |
| Location     |                                                              | set 1.4 m right of centerline of 6th Line (EBL)                                              |                       |                |               |                  |                         |
|              | 0 - 25                                                       | PST                                                                                          |                       |                |               |                  |                         |
| BH306        | 25 - 250                                                     | Brown crushed SAND and GRAVEL, trace to some silt, moist, compact (Granular Base)            |                       |                |               |                  |                         |
| 211300       | 250 - 590                                                    | Brown gravely SAND, some silt, moist compact (Granular Subbase)                              |                       |                |               |                  |                         |
|              | 590 - 1.5                                                    | Brown SILTY SAND, trace clay, moist, compact                                                 | ]                     |                |               |                  |                         |

## TABLE 2 RECORD OF PAVEMENT BOREHOLES - Section 2

1413283 Sheet 2 of 2

6th Line from County Road 27 to Side Road 20, Innisfil, Ontario

| -            |                                                      | BOREHOLE LOG                                                                                                                                                                                                                                                                                 |                                                       |                         |                           |                         | RATORY TESTING                                          |
|--------------|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------|---------------------------|-------------------------|---------------------------------------------------------|
| Borehole No. | Depth (mm/m)                                         |                                                                                                                                                                                                                                                                                              | Sample Depth (mm)                                     | Frost<br>Susceptibility | K Factor<br>(Erodability) | Water<br>Content<br>(%) | Gradation                                               |
|              | <b>x</b> , , , ,                                     | 6th Line                                                                                                                                                                                                                                                                                     |                                                       |                         |                           |                         |                                                         |
| Location     | Station 16+200, offs                                 | set 1.6 m left of centerline of 6th Line (WBL)                                                                                                                                                                                                                                               |                                                       |                         |                           |                         |                                                         |
| BH307        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | PST<br>RAP<br>Brown crushed SAND and GRAVEL, trace to some silt, moist, compact (Granular Base)<br>Brown gravely SAND, some silt, moist compact (Granular Subbase)<br>Dark Brown to Black ORGANIC SILT and SAND, trace clay, moist, loose<br>Brown to Grey sandy CLAYEY SILT, moist, compact |                                                       |                         |                           |                         |                                                         |
| Location     |                                                      | set 1.5 m right of centerline of 6th Line (EBL)                                                                                                                                                                                                                                              |                                                       |                         |                           |                         |                                                         |
| BH308        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | PST<br>RAP<br>Brown crushed SAND and GRAVEL, trace to some silt, moist, compact (Granular Base)<br>Brown gravely SAND, some silt, moist compact (Granular Subbase)<br>Black ORGANIC SAND and SILT, moist, loose<br>Brown SAND trace silt, moist, free water @ 1.10, saturated, compact       | $ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ |                         |                           | 3.8                     | Figure B2, Unacceptable<br>Granular B Type I, too silty |
| Location     | Station 18+200, offs                                 | set 1.6 m left of centerline of 6th Line (WBL)                                                                                                                                                                                                                                               |                                                       |                         |                           | I.                      |                                                         |
| BH309        | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | PST<br>RAP<br>Brown crushed SAND and GRAVEL, trace to some silt, moist, compact (Granular Base)<br>Brown gravely SAND, some silt, moist compact (Granular Subbase)<br>Brown SILTY SAND, trace clay, moist, free water @ 1.20, saturated, compact                                             | 1.0 - 1.3                                             | LSFH-MSFH               | 0.35                      | 15.7                    | Figure B6                                               |
| Location     |                                                      | set 1.4 m right of centerline of 6th Line (EBL)                                                                                                                                                                                                                                              |                                                       | [                       | [                         |                         |                                                         |
| BH310        | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | Asphalt<br>Brown crushed SAND and GRAVEL, trace to some silt, moist, compact (Granular Base)<br>Brown gravely SAND, some silt, moist compact (Granular Subbase)<br>Brown SILTY SAND, moist, compact                                                                                          | 1.1 - 1.4                                             |                         |                           |                         |                                                         |
| Location     | Station 20+200, offs                                 | set 1.3 m left of centerline of 6th Line (WBL)                                                                                                                                                                                                                                               |                                                       | -                       | -                         |                         | -                                                       |
| BH311        | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | PST<br>Brown crushed SAND and GRAVEL, trace to some silt, moist, compact (Granular Base)<br>Grey gravely SAND, some silt, moist compact (Granular Subbase)<br>Brown to grey SILTY SAND, some clay, trace gravel, moist, compact                                                              | $50 - 100 \\ 200 - 400 \\ 1.2 - 1.5$                  | LSFH                    | 0.30                      | 15.1                    | Figure B6                                               |
| Location     |                                                      | set 1.5m right of centerline of 6th Line (EBL)                                                                                                                                                                                                                                               |                                                       |                         |                           |                         |                                                         |
| BH312        | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$ | Asphalt<br>Brown crushed SAND and GRAVEL, trace to some silt, moist, compact (Granular Base)<br>Brown gravely SAND, some silt, moist compact (Granular Subbase)<br>Brown SILTY SAND, some clay, trace gravel, moist, compact                                                                 |                                                       |                         |                           |                         |                                                         |

### TABLE 3 RECORD OF HAND AUGER BOREHOLES - Section 1

6th Line from Side Road 20 to St. Johns Road, Innisfil, Ontario

|              | BOREHOLE LOG         |                                                                                                |  |  |  |  |  |
|--------------|----------------------|------------------------------------------------------------------------------------------------|--|--|--|--|--|
|              |                      |                                                                                                |  |  |  |  |  |
| Borehole No. | Depth (mm/m)         |                                                                                                |  |  |  |  |  |
| Borenoie No. |                      | 6th Line Innisfil                                                                              |  |  |  |  |  |
| Location     | Station 22+200 offs  | set 9.0 m left of centerline of 6th Line. Elevation: 900 mm below road surface at ceterline    |  |  |  |  |  |
|              | 0 - 290              | Dark Brown Silty Topsoil, free water @ 100, saturated                                          |  |  |  |  |  |
| BH201        | 290 - 1.0            | Brown SILT, trace sand, trace clay, saturated, compact                                         |  |  |  |  |  |
| Location     | =, 00                | set 7.5 m left of centerline of 6th Line. Elevation: 450 mm below road surface at centerline   |  |  |  |  |  |
|              | 0 - 380              | Dark Brown Silty Topsoil, free water @ 200, saturated                                          |  |  |  |  |  |
| BH202        | 380 - 1.0            | Brown SILT and SAND, some clay, trace gravel, moist, compact                                   |  |  |  |  |  |
| Location     | Station 22+600, offs | set 9.5 m right of centerline of 6th Line. Elevation: 200 mm below road surface at centerline  |  |  |  |  |  |
| DUDOD        | 0 - 320              | Dark Brown Silty Topsoil                                                                       |  |  |  |  |  |
| BH203        | 320 - 1.0            | Brown SILT and SAND, some clay, trace gravel, moist, compact                                   |  |  |  |  |  |
| Location     | Station 23+142, offs | set 8.0 m left of centerline of 6th Line. Elevation: 1.70 m below road surface at centerline   |  |  |  |  |  |
| BH204        | 0 - 450              | Dark Brown Silty Topsoil, free water @ surface, saturated                                      |  |  |  |  |  |
| BH204        | 450 - 1.0            | Brown SILT and SAND, some clay, trace gravel, moist, compact                                   |  |  |  |  |  |
| Location     | Station 23+400, offs | set 18.0 m right of centerline of 6th Line. Elevation: 4.20 m below road surface at centerline |  |  |  |  |  |
| BH205        | 0 - 400              | Dark Brown Silty Topsoil                                                                       |  |  |  |  |  |
| BH203        | 400 - 1.0            | Brown SILT and SAND, some clay, trace gravel, moist, compact                                   |  |  |  |  |  |
| Location     | Station 23+400, offs | set 17.0 m left of centerline of 6th Line. Elevation: 3.50 m below road surface at centerline  |  |  |  |  |  |
| BH206        | 0 - 490              | Dark Brown Silty Topsoil                                                                       |  |  |  |  |  |
| B11200       | 490 - 1.0            | Brown SILT and SAND, some clay, trace gravel, moist, compact                                   |  |  |  |  |  |
| Location     | Station 23+800, offs | set 10.0 m right of centerline of 6th Line. Elevation: 400 mm below road surface at centerline |  |  |  |  |  |
| BH207        | 0 - 470              | Dark Brown Silty Topsoil                                                                       |  |  |  |  |  |
| DII207       | 470 - 1.0            | Brown SILT and SAND, some clay, trace gravel, occasional cobbles, moist, compact               |  |  |  |  |  |
| Location     |                      | set 8.8 m left of centerline of 6th Line. Elevation: 300 mm below road surface at centerline   |  |  |  |  |  |
| BH208        | 0 - 600              | Dark Brown Silty Topsoil, free water @ 100, saturated                                          |  |  |  |  |  |
|              | 600 - 1.1            | Brown SILT and SAND, some clay, trace gravel, occasional cobbles, moist, compact               |  |  |  |  |  |
| Location     |                      | set 10.0 m left of centerline of 6th Line. Elevation: 700 mm below road surface at centerline  |  |  |  |  |  |
| BH209        | 0 - 450              | Dark Brown Silty Topsoil, free water @ 100, saturated                                          |  |  |  |  |  |
|              | 450 - 1.0            | Brown SILT and SAND, some clay, trace gravel, occasional cobbles, moist, compact               |  |  |  |  |  |
| Location     |                      | set 7.8 m right of centerline of 6th Line. Elevation: 350 mm below road surface at centerline  |  |  |  |  |  |
| BH210        | 0 - 300              | Dark Brown Silty Topsoil, free water @ 100, saturated                                          |  |  |  |  |  |
|              | 300 - 1.0            | Brown SILT and SAND, some clay, trace gravel, occasional cobbles, moist, compact               |  |  |  |  |  |

Inputted by: <u>DM</u> Checked by: <u>JBH</u>

## Table 4 RECORD OF CORING 6th Line from County Road 27 to St Johns Road, Innisfil, Ontario

|         |             | OFFSET FROM EX. |          | CORE           |            | CRAC        | K WIDTH        |
|---------|-------------|-----------------|----------|----------------|------------|-------------|----------------|
| Station | Core Number | C/L (m)         | Тwp.     | THICKNESS (mm) | CRACK TYPE | TOP<br>(mm) | BOTTOM<br>(mm) |
| 11+200  | 01          | 1.0 m Rt        | Innisfil | 25             | N/A        | -           | -              |
| 14+200  | 02          | 1.5 m Lt        | Innisfil | 25             | N/A        | -           | -              |
| 17+200  | 03          | 1.5 m Lt        | Innisfil | 25             | N/A        | -           | -              |
| 20+200  | 04          | 1.3 m Lt        | Innisfil | 25             | N/A        | -           | -              |
| 22+200  | 05          | 1.2 m Lt        | Innisfil | 110            | N/A        | -           | -              |
| 22+600  | 06          | 1.3 m Rt        | Innisfil | 30             | Alligator  | 1           | 5              |
| 23+358  | 07          | 1.5 m Rt        | Innisfil | 25             | N/A        | -           | -              |
| 24+300  | 08          | 1.6 m Rt        | Innisfil | 30             | N/A        | -           | -              |
| 24+800  | 09          | 1.5 m Lt        | Innisfil | 30             | N/A        | -           | -              |
| 25+300  | 10          | 1.6 m Rt        | Innisfil | 25             | Alligator  | 5           | 5              |

Inputted by: <u>DM</u> Checked by: <u>JBH</u>



## **APPENDIX A**

Important Information and Limitation of This Report



#### IMPORTANT INFORMATION AND LIMITATIONS OF THIS REPORT

**Standard of Care:** Golder Associates Ltd. (Golder) has prepared this report in a manner consistent with that level of care and skill ordinarily exercised by members of the engineering and science professions currently practising under similar conditions in the jurisdiction in which the services are provided, subject to the time limits and physical constraints applicable to this report. No other warranty, expressed or implied is made.

**Basis and Use of the Report:** This report has been prepared for the specific site, design objective, development and purpose described to Golder by the Client. The factual data, interpretations and recommendations pertain to a specific project as described in this report and are not applicable to any other project or site location. Any change of site conditions, purpose, development plans or if the project is not initiated within eighteen months of the date of the report may alter the validity of the report. Golder can not be responsible for use of this report, or portions thereof, unless Golder is requested to review and, if necessary, revise the report.

The information, recommendations and opinions expressed in this report are for the sole benefit of the Client. No other party may use or rely on this report or any portion thereof without Golder's express written consent. If the report was prepared to be included for a specific permit application process, then upon the reasonable request of the client, Golder may authorize in writing the use of this report by the regulatory agency as an Approved User for the specific and identified purpose of the applicable permit review process. Any other use of this report by others is prohibited and is without responsibility to Golder. The report, all plans, data, drawings and other documents as well as all electronic media prepared by Golder are considered its professional work product and shall remain the copyright property of Golder, who authorizes only the Client and Approved Users to make copies of the report, but only in such quantities as are reasonably necessary for the use of the report by those parties. The Client and Approved Users may not give, lend, sell, or otherwise make available the report or any portion thereof to any other party without the express written permission of Golder. The Client acknowledges that electronic media is susceptible to unauthorized modification, deterioration and incompatibility and therefore the Client can not rely upon the electronic media versions of Golder's report or other work products.

The report is of a summary nature and is not intended to stand alone without reference to the instructions given to Golder by the Client, communications between Golder and the Client, and to any other reports prepared by Golder for the Client relative to the specific site described in the report. In order to properly understand the suggestions, recommendations and opinions expressed in this report, reference must be made to the whole of the report. Golder can not be responsible for use of portions of the report without reference to the entire report.

Unless otherwise stated, the suggestions, recommendations and opinions given in this report are intended only for the guidance of the Client in the design of the specific project. The extent and detail of investigations, including the number of test holes, necessary to determine all of the relevant conditions which may affect construction costs would normally be greater than has been carried out for design purposes. Contractors bidding on, or undertaking the work, should rely on their own investigations, as well as their own interpretations of the factual data presented in the report, as to how subsurface conditions may affect their work, including but not limited to proposed construction techniques, schedule, safety and equipment capabilities.

**Soil, Rock and Ground water Conditions:** Classification and identification of soils, rocks, and geologic units have been based on commonly accepted methods employed in the practice of geotechnical engineering and related disciplines. Classification and identification of the type and condition of these materials or units involves judgment, and boundaries between different soil, rock or geologic types or units may be transitional rather than abrupt. Accordingly, Golder does not warrant or guarantee the exactness of the descriptions.



#### IMPORTANT INFORMATION AND LIMITATIONS OF THIS REPORT

Special risks occur whenever engineering or related disciplines are applied to identify subsurface conditions and even a comprehensive investigation, sampling and testing program may fail to detect all or certain subsurface conditions. The environmental, geologic, geotechnical, geochemical and hydrogeologic conditions that Golder interprets to exist between and beyond sampling points may differ from those that actually exist. In addition to soil variability, fill of variable physical and chemical composition can be present over portions of the site or on adjacent properties. The professional services retained for this project include only the geotechnical aspects of the subsurface conditions at the site, unless otherwise specifically stated and identified in the report. The presence or implication(s) of possible surface and/or subsurface contamination resulting from previous activities or uses of the site and/or resulting from the introduction onto the site of materials from off-site sources are outside the terms of reference for this project and have not been investigated or addressed.

Soil and groundwater conditions shown in the factual data and described in the report are the observed conditions at the time of their determination or measurement. Unless otherwise noted, those conditions form the basis of the recommendations in the report. Groundwater conditions may vary between and beyond reported locations and can be affected by annual, seasonal and meteorological conditions. The condition of the soil, rock and groundwater may be significantly altered by construction activities (traffic, excavation, groundwater level lowering, pile driving, blasting, etc.) on the site or on adjacent sites. Excavation may expose the soils to changes due to wetting, drying or frost. Unless otherwise indicated the soil must be protected from these changes during construction.

**Sample Disposal:** Golder will dispose of all uncontaminated soil and/or rock samples 90 days following issue of this report or, upon written request of the Client, will store uncontaminated samples and materials at the Client's expense. In the event that actual contaminated soils, fills or groundwater are encountered or are inferred to be present, all contaminated samples shall remain the property and responsibility of the Client for proper disposal.

**Follow-Up and Construction Services:** All details of the design were not known at the time of submission of Golder's report. Golder should be retained to review the final design, project plans and documents prior to construction, to confirm that they are consistent with the intent of Golder's report.

During construction, Golder should be retained to perform sufficient and timely observations of encountered conditions to confirm and document that the subsurface conditions do not materially differ from those interpreted conditions considered in the preparation of Golder's report and to confirm and document that construction activities do not adversely affect the suggestions, recommendations and opinions contained in Golder's report. Adequate field review, observation and testing during construction are necessary for Golder to be able to provide letters of assurance, in accordance with the requirements of many regulatory authorities. In cases where this recommendation is not followed, Golder's responsibility is limited to interpreting accurately the information encountered at the borehole locations, at the time of their initial determination or measurement during the preparation of the Report.

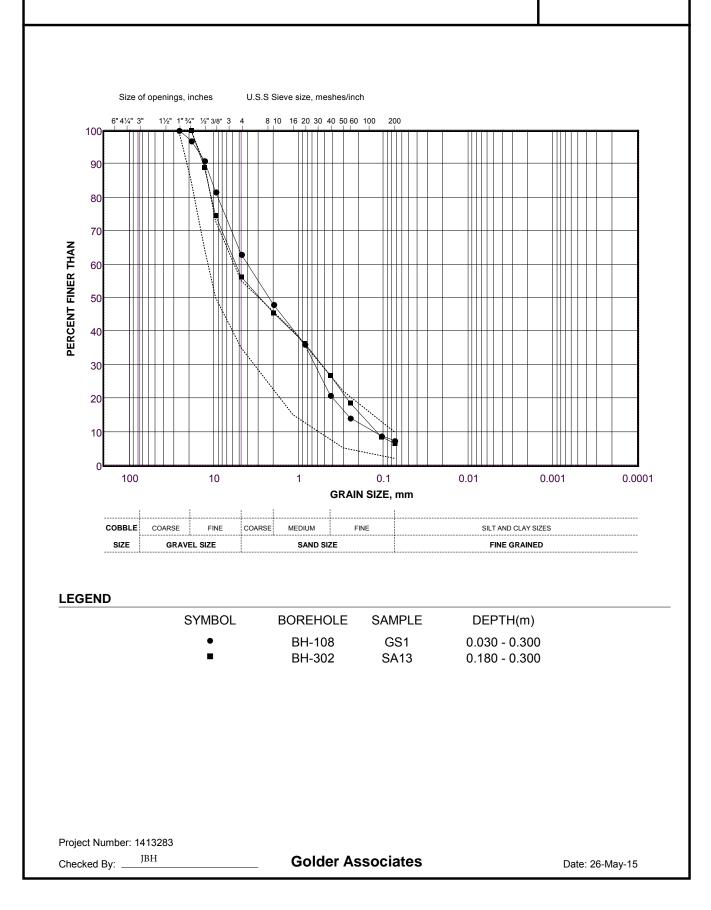
**Changed Conditions and Drainage:** Where conditions encountered at the site differ significantly from those anticipated in this report, either due to natural variability of subsurface conditions or construction activities, it is a condition of this report that Golder be notified of any changes and be provided with an opportunity to review or revise the recommendations within this report. Recognition of changed soil and rock conditions requires experience and it is recommended that Golder be employed to visit the site with sufficient frequency to detect if conditions have changed significantly.

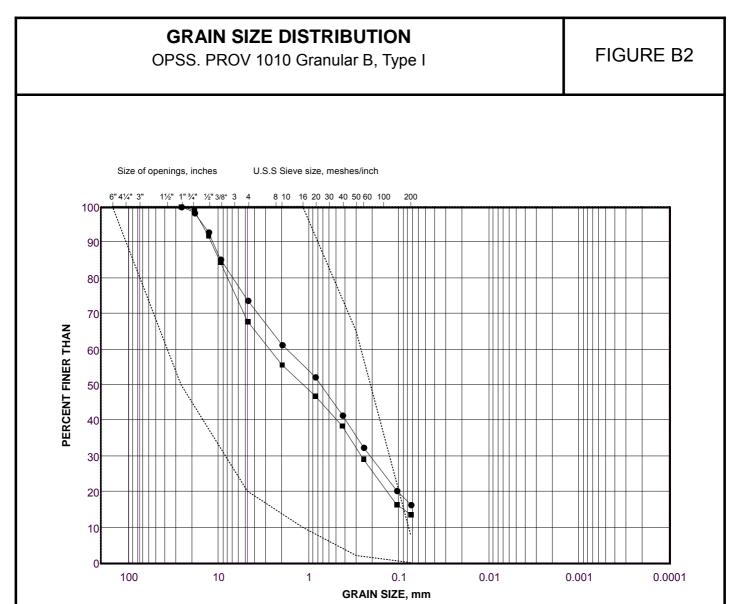
Drainage of subsurface water is commonly required either for temporary or permanent installations for the project. Improper design or construction of drainage or dewatering can have serious consequences. Golder takes no responsibility for the effects of drainage unless specifically involved in the detailed design and construction monitoring of the system.





## **APPENDIX B**

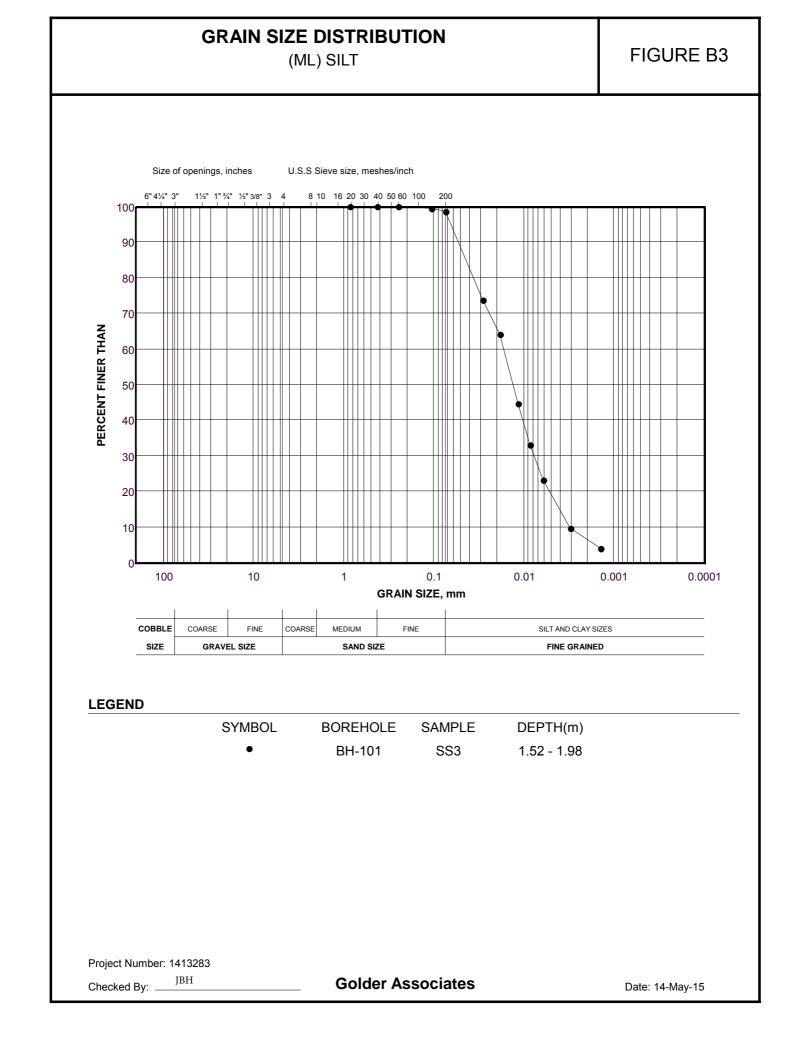

Laboratory Test Results - Grain Size Distribution

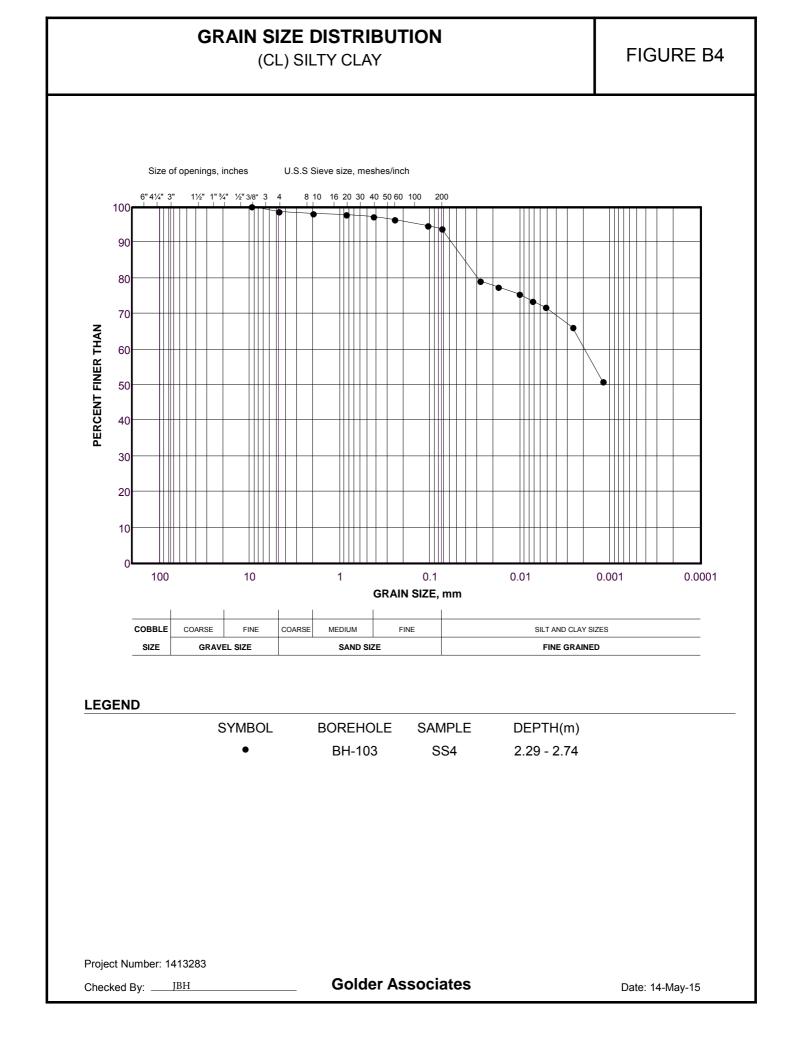


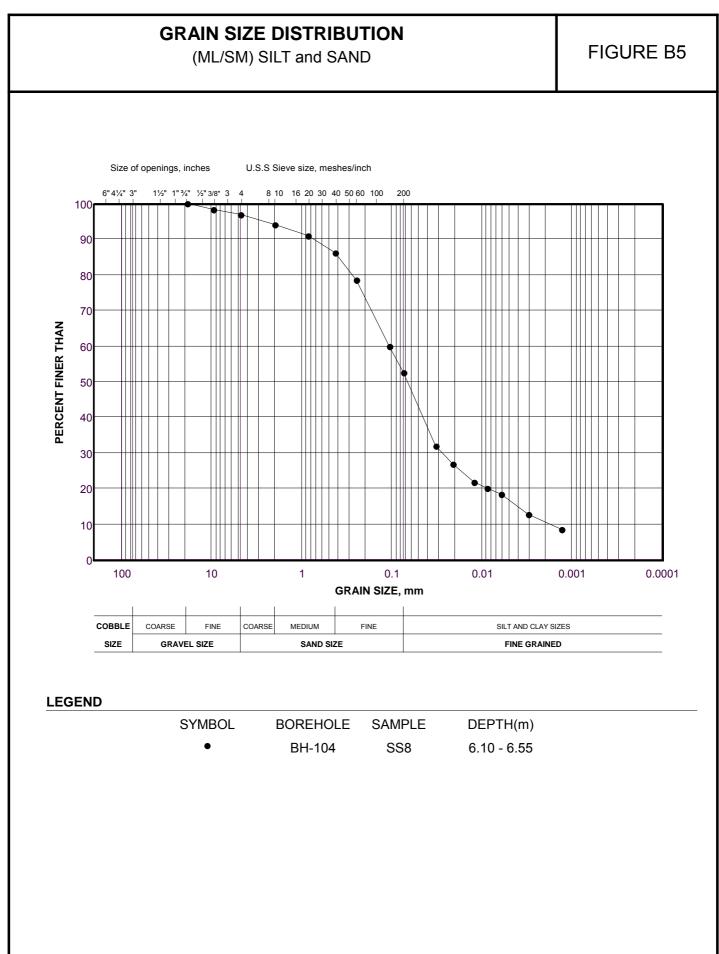

## **GRAIN SIZE DISTRIBUTION**

OPSS. PROV 1010 Granular A

FIGURE B1



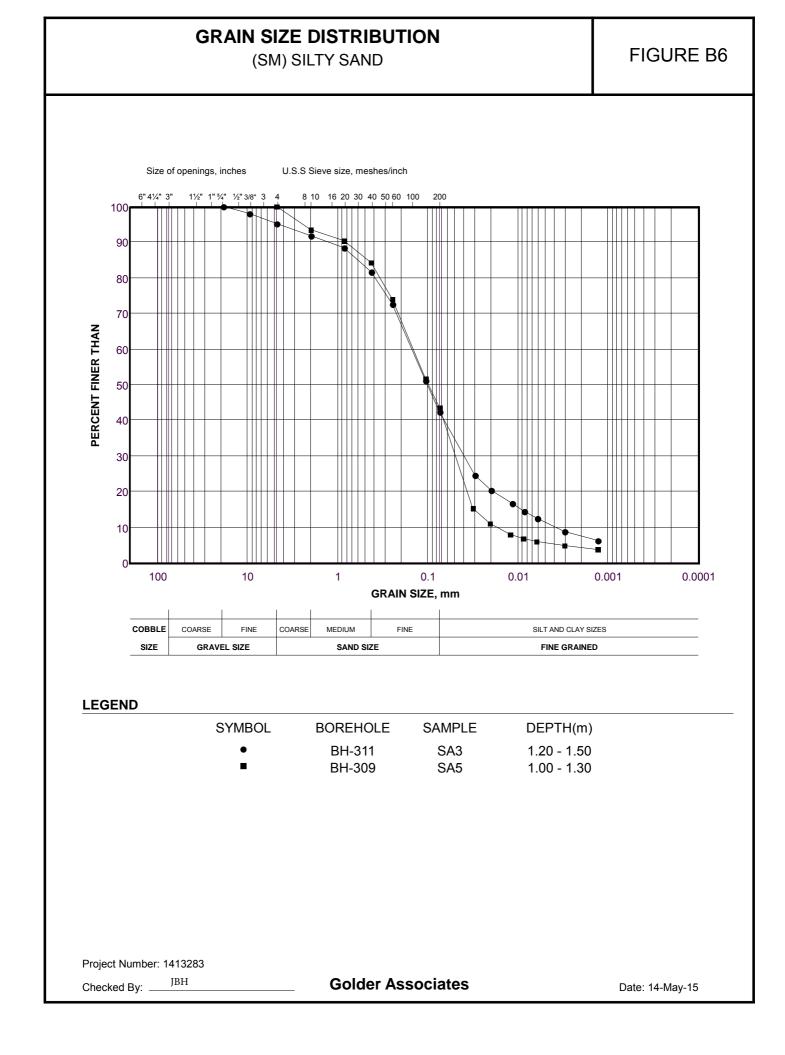





| COBBLE | COARSE      | FINE | COARSE    | MEDIUM | FINE | SILT AND CLAY SIZES |
|--------|-------------|------|-----------|--------|------|---------------------|
| SIZE   | GRAVEL SIZE |      | SAND SIZE |        | ZE   | FINE GRAINED        |

#### LEGEND

| Project Number: 1413283 Checked By: |        | Golder As | sociates |               | Date: 26-May-15 |
|-------------------------------------|--------|-----------|----------|---------------|-----------------|
| Draiget Number: 1412282             |        |           |          |               |                 |
|                                     |        |           |          |               |                 |
|                                     |        |           |          |               |                 |
|                                     |        |           |          |               |                 |
|                                     |        |           |          |               |                 |
|                                     |        |           |          |               |                 |
|                                     |        |           |          |               |                 |
|                                     | •      | BH-308    | SA6      | 0.400 - 0.600 |                 |
|                                     | •      | BH-102    | GS2      | 0.300 - 0.600 |                 |
| :                                   | SYMBOL | BOREHOLE  | SAMPLE   | DEPTH(m)      |                 |








Project Number: 1413283

**Golder Associates** 

Date: 26-May-15





# APPENDIX C

**AASHTO Pavement Design Sheets** 



#### EQUIVALENT SINGLE AXLE LOAD CALCULATION Town of Innisfil - 6th Line Environmental Assessment PAVEMENT DESIGN FOR RECONSTRUCTION OF 6th LINE (20 Year Design) (Using Traffic Data from the 20th Sideroad to St. John's Road)

|                                                 |                            | ·                   |             |
|-------------------------------------------------|----------------------------|---------------------|-------------|
| 1) Traffic Analysis                             | 0015                       | 0001                | 0000        |
| Traffic Data Year                               | <u>2015</u><br><b>2016</b> | <u>2031</u>         | <u>2036</u> |
| Design Year<br>Traffic Analysis Period          | 2010                       | 16                  | 5           |
| Average Annual Daily Traffic (AADT)             | 800                        | 17,100              | 18,500      |
| Average Rate of Increase in Traffic (%)         | 000                        | 21.1                | 1.6         |
| Truck Fraction of Total Traffic                 | 4.0%                       | 5.0%                | 5.0%        |
| Average Rate of Increase in Truck Fraction (%)  |                            | 1.4                 | 0.0         |
| Number of Lanes in One Direction                | 1                          | 1                   | 1           |
| Directional Factor                              | 0.5                        | 0.5                 | 0.5         |
| Lane Distribution Factor                        | 1                          | 1                   | 1           |
| Daily Truck Volume                              | 20                         | 428                 | 463         |
| 2) Daily ESALs Analysis                         |                            |                     |             |
| Road Classification                             | Urban Minor Arteri         | a <u>l</u>          |             |
| Breakdown of Truck Proportions                  |                            | —                   |             |
| Class 1                                         | 0.65                       |                     |             |
| Class 2                                         | 0.05                       |                     |             |
| Class 3                                         | 0.2                        |                     |             |
| Class 4                                         | 0.1                        |                     |             |
| Daily Truck Volumes for 4 Classes               | <u>2016</u>                | <u>2031</u>         | <u>2036</u> |
| Class 1                                         | 13                         | 278                 | 301         |
| Class 2                                         | 1                          | 21                  | 23          |
| Class 3<br>Class 4                              | 4                          | 86<br>43            | 93<br>46    |
| Class 4<br>Truck Factors for 4 Classes of Truck | 2                          | 43                  | 40          |
| Class 1                                         | 0.5                        |                     |             |
| Class 2                                         | 2.3                        |                     |             |
| Class 3                                         | 1.6                        |                     |             |
| Class 4                                         | 5.5                        |                     |             |
| Weighted Average Truck Factor                   | 1.310                      |                     |             |
| Daily ESALs per Truck Class                     |                            |                     |             |
| Class 1                                         | 6                          | 139                 | 150         |
| Class 2                                         | 2                          | 49                  | 53          |
| Class 3                                         | 6                          | 137                 | 148         |
| Class 4                                         | 11                         | 235                 | 254         |
| Total Daily ESALs in Design Lane                | 26                         | 560                 | 606         |
|                                                 |                            |                     |             |
| 3) Total ESALs for Base Year                    |                            |                     |             |
| Base Year                                       | <u>2016</u>                | <u>2031</u>         | <u>2036</u> |
| Number of Days of Truck Traffic                 | 365                        | 365                 | 365         |
| Total ESALs for Base Year                       | 9,394                      | 204,409             | 221,144     |
|                                                 |                            |                     |             |
| 4) Cumulative ESALs for the Design Period       |                            |                     |             |
| Design Period                                   | 20                         |                     |             |
| Span of Design Periods                          | <u>2016 to 2031</u>        | <u>2031 to 2036</u> |             |
| Average Rate of Increase in Truck Volume (%)    | 22.8                       | 1.6                 |             |
| Number of Years Within Design Period            | 15                         | 5                   |             |
| Geometric Growth Factor over Number of Years    | 91.07                      | 5.16                |             |
| Number of ESALs over Design Period              | 855,566                    | 1,054,989           |             |
| Cumulative ESALs for the Design Period          |                            | 1,910,555           |             |
| <b>C</b>                                        |                            |                     |             |

Note: The ESAL calculations are based on the Guidelines "Procedures for Estimating Traffic Loads for Pavement Design" by Jerry Hajek, 1995, and on MTO's "Adaptation and Verification of AASHTO Pavement Design Guide for Ontario Conditions".

#### Project: 6th Line Environmental Assessment, Section 1 Subgrade: Silty Clay Subgrade

#### **Reconstruction Design**

#### Flexible Structural Design

| 80 kN ESALs Over Initial   |           |
|----------------------------|-----------|
| Performance Period         | 1,900,000 |
| Initial Servicability      | 4.4       |
| Terminal Servicability     | 2.2       |
| Reliability Level          | 85        |
| Overall Standard Deviation | 0.49      |
| Roadbed Soil Resilient     |           |
| Modulus                    | 25        |
| Stage Construction         | 1         |
|                            |           |
|                            |           |

#### Required Design Structural Number

117

#### Specified Layer Design

|       |                        | Struct<br>Coef. | Drain<br>Coef. | Thickness        | Calculated     |
|-------|------------------------|-----------------|----------------|------------------|----------------|
| Layer | Material Description   | <u>(Ai)</u>     | <u>(Mi)</u>    | <u>(Di) (mm)</u> | <u>SN (mm)</u> |
| 1     | New Hot Mix Asphalt    | 0.42            | 1              | 140              | 59             |
| 2     | New Granular A         | 0.14            | 1              | 150              | 21             |
| 3     | New Granular B, Type I | 0.09            | 1              | 450              | 41             |
| Total | -                      | -               | -              | 600              | 120            |

#### Layered Thickness Analysis

|              |                        | Struct      | Drain       | Elastic      | Calculated  |                |
|--------------|------------------------|-------------|-------------|--------------|-------------|----------------|
|              |                        | Coef.       | Coef.       | Modulus      | Thickness   | Calculated     |
| <u>Layer</u> | Material Description   | <u>(Ai)</u> | <u>(Mi)</u> | <u>(kPa)</u> | <u>(mm)</u> | <u>SN (mm)</u> |
| 1            | New Hot Mix Asphalt    | 0.42        | 1           | 2,750,000    | 131         | 55             |
| 2            | New Granular A         | 0.14        | 1           | 210,000      | 145         | 20             |
| 3            | New Granular B, Type I | 0.09        | 1           | 90,000       | 460         | 41             |
| Total        | -                      | -           | -           | -            | 605         | 117            |

| Designed: | DM  |
|-----------|-----|
| Checked:  | JBH |

#### EQUIVALENT SINGLE AXLE LOAD CALCULATION Town of Innisfil - 6th Line Environmental Assessment PAVEMENT DESIGN FOR RECONSTRUCTION OF 6th LINE (20 Year Design) (Using Traffic Data from County Road 27 to 20th Sideroad)

| 1) Traffic Analysis                            |                      |                 |                 |
|------------------------------------------------|----------------------|-----------------|-----------------|
| Traffic Data Year                              | <u>2015</u>          | 2031            | 2036            |
| Design Year                                    | 2016                 | 2001            | 2000            |
| Traffic Analysis Period                        | 2010                 | 16              | 5               |
| Average Annual Daily Traffic (AADT)            | 300                  | 11,300          | 13,600          |
| Average Rate of Increase in Traffic (%)        | 300                  | 25.5            | 3.8             |
| Truck Fraction of Total Traffic                | 3.0%                 | 5.0%            | 5.0%            |
|                                                | 3.0%                 |                 |                 |
| Average Rate of Increase in Truck Fraction (%) | 4                    | 3.2             | 0.0             |
| Number of Lanes in One Direction               | 1                    | 1               | 1               |
| Directional Factor                             | 0.5                  | 0.5             | 0.5             |
| Lane Distribution Factor Daily Truck Volume    | 1<br>6               | 1<br><b>283</b> | 1<br><b>340</b> |
|                                                | -                    |                 |                 |
| 2) Daily ESALs Analysis                        |                      |                 |                 |
| Road Classification                            | Urban Principal Arte | rial            |                 |
| Breakdown of Truck Proportions                 |                      |                 |                 |
| Class 1                                        | 0.3                  |                 |                 |
| Class 2                                        | 0.1                  |                 |                 |
| Class 3                                        | 0.45                 |                 |                 |
| Class 4                                        | 0.15                 |                 |                 |
| Daily Truck Volumes for 4 Classes              | <u>2016</u>          | <u>2031</u>     | <u>2036</u>     |
| Class 1                                        | 2                    | 85              | 102             |
| Class 2                                        | 1                    | 28              | 34              |
| Class 3                                        | 3                    | 127             | 153             |
| Class 4                                        | 1                    | 42              | 51              |
| Truck Factors for 4 Classes of Truck           | I                    | 72              | 51              |
| Class 1                                        | 0.5                  |                 |                 |
| Class 1<br>Class 2                             | 2.3                  |                 |                 |
|                                                |                      |                 |                 |
| Class 3                                        | 1.6                  |                 |                 |
| Class 4                                        | 5.5                  |                 |                 |
| Weighted Average Truck Factor                  | 1.925                |                 |                 |
| Daily ESALs per Truck Class                    |                      |                 | - /             |
| Class 1                                        | 1                    | 42              | 51              |
| Class 2                                        | 1                    | 65              | 78              |
| Class 3                                        | 4                    | 203             | 245             |
| Class 4                                        | 5                    | 233             | 281             |
| Total Daily ESALs in Design Lane               | 11                   | 544             | 655             |
|                                                |                      |                 |                 |
| 3) Total ESALs for Base Year                   |                      |                 |                 |
| Base Year                                      | <u>2016</u>          | <u>2031</u>     | <u>2036</u>     |
| Number of Days of Truck Traffic                | 365                  | 365             | 365             |
| Total ESALs for Base Year                      | 4,095                | 198,492         | 238,893         |
|                                                |                      |                 |                 |
| 4) Cumulative ESALs for the Design Period      |                      |                 |                 |
| Design Period                                  | 20                   |                 |                 |
| Span of Design Periods                         | 2016 to 2031         | 2031 to 2036    |                 |
| Average Rate of Increase in Truck Volume (%)   | 29.5                 | 3.8             |                 |
| Number of Years Within Design Period           | 15                   | 5               |                 |
| Geometric Growth Factor over Number of Years   | 160.75               | 5.39            |                 |
| Number of ESALs over Design Period             | 658,350              | 1,070,267       |                 |
|                                                | 000,000              | 1,010,201       |                 |
| Cumulative ESALs for the Design Period         |                      | 1,728,618       |                 |
| -                                              |                      |                 |                 |

Note: The ESAL calculations are based on the Guidelines "Procedures for Estimating Traffic Loads for Pavement Design" by Jerry Hajek, 1995,

and on MTO's "Adaptation and Verification of AASHTO Pavement Design Guide for Ontario Conditions".

| Designed: | DM  |
|-----------|-----|
| Checked:  | JBH |

#### Project: 6th Line Environmental Assessment, Section 2 Subgrade: Silty Clay Subgrade

#### **Reconstruction Design With Grade Raise**

#### Flexible Structural Design

| 80 kN ESALs Over Initial   |           |
|----------------------------|-----------|
| Performance Period         | 1,700,000 |
| Initial Servicability      | 4.5       |
| Terminal Servicability     | 2.5       |
| Reliability Level          | 90        |
| Overall Standard Deviation | 0.49      |
| Roadbed Soil Resilient     |           |
| Modulus                    | 25        |
| Stage Construction         | 1         |
|                            |           |
|                            |           |

#### Required Design Structural Number

125

#### **Specified Layer Design**

| Leven      | Material Description                               | Struct<br>Coef.     | Drain<br>Coef.   | Thickness               | Calculated           |
|------------|----------------------------------------------------|---------------------|------------------|-------------------------|----------------------|
| Layer<br>1 | <u>Material Description</u><br>New Hot Mix Asphalt | <u>(Ai)</u><br>0.42 | <u>(Mi)</u><br>1 | <u>(Di) (mm)</u><br>140 | <u>SN (mm)</u><br>59 |
| 2          | New Granular A                                     | 0.14                | 1                | 300                     | 42                   |
| 3          | Existing Granular Base                             | 0.11                | 0.9              | 160                     | 16                   |
| 4          | Existing Granular Subbase                          | 0.06                | 0.9              | 360                     | 19                   |
| Total      |                                                    | -                   | -                | 820                     | 136                  |

#### Layered Thickness Analysis

|          |                           | Struct      | Drain       | Elastic      | Calculated  |                |
|----------|---------------------------|-------------|-------------|--------------|-------------|----------------|
|          |                           | Coef.       | Coef.       | Modulus      | Thickness   | Calculated     |
| Layer    | Material Description      | <u>(Ai)</u> | <u>(Mi)</u> | <u>(kPa)</u> | <u>(mm)</u> | <u>SN (mm)</u> |
| <u>1</u> | New Hot Mix Asphalt       | 0.42        | 1           | 2,750,000    | 131         | 55             |
| 2        | New Granular A            | 0.14        | 1           | 210,000      | 224         | 31             |
|          | Existing Granular Base    | 0.11        | 0.9         | 180,000      | 145         | 14             |
| 3        | Existing Granular Subbase | 0.06        | 0.9         | 70,000       | 452         | 24             |
| Total    | -                         | -           | -           | -            | 821         | 125            |

#### Project: 6th Line Environmental Assessment, Section 2 Subgrade: Silty Clay Subgrade

#### **Option 2 - Reconstruction Design**

#### Flexible Structural Design

| 80 kN ESALs Over Initial   |           |
|----------------------------|-----------|
| Performance Period         | 1,700,000 |
| Initial Servicability      | 4.5       |
| Terminal Servicability     | 2.5       |
| Reliability Level          | 90        |
| Overall Standard Deviation | 0.49      |
| Roadbed Soil Resilient     |           |
| Modulus                    | 25        |
| Stage Construction         | 1         |
|                            |           |

#### Required Design Structural Number

125

#### Specified Layer Design

|       |                        | Struct<br>Coef. | Drain<br>Coef. | Thickness        | Calculated     |
|-------|------------------------|-----------------|----------------|------------------|----------------|
| Layer | Material Description   | <u>(Ai)</u>     | <u>(Mi)</u>    | <u>(Di) (mm)</u> | <u>SN (mm)</u> |
| 1     | New Hot Mix Asphalt    | 0.42            | 1              | 140              | 59             |
| 2     | New Granular A         | 0.14            | 1              | 150              | 21             |
| 3     | New Granular B, Type I | 0.09            | 1              | 500              | 45             |
| Total | -                      | -               | -              | 650              | 125            |

#### Layered Thickness Analysis

|              |                        | Struct      | Drain       | Elastic      | Calculated  |                |
|--------------|------------------------|-------------|-------------|--------------|-------------|----------------|
|              |                        | Coef.       | Coef.       | Modulus      | Thickness   | Calculated     |
| <u>Layer</u> | Material Description   | <u>(Ai)</u> | <u>(Mi)</u> | <u>(kPa)</u> | <u>(mm)</u> | <u>SN (mm)</u> |
| 1            | New Hot Mix Asphalt    | 0.42        | 1           | 2,750,000    | 131         | 55             |
| 2            | New Granular A         | 0.14        | 1           | 210,000      | 162         | 23             |
| 3            | New Granular B, Type I | 0.09        | 1           | 90,000       | 590         | 53             |
| Total        | -                      | -           | -           | -            | 752         | 131            |

| Designed: | DM  |  |
|-----------|-----|--|
| Checked:  | JBH |  |
| -         |     |  |

As a global, employee-owned organisation with over 50 years of experience, Golder Associates is driven by our purpose to engineer earth's development while preserving earth's integrity. We deliver solutions that help our clients achieve their sustainable development goals by providing a wide range of independent consulting, design and construction services in our specialist areas of earth, environment and energy.

For more information, visit golder.com

Asia 
 North America
 + 1 800 275 3281

 South America
 + 56 2 2616 2000

+ 27 11 254 4800

+ 86 21 6258 5522

+ 61 3 8862 3500 + 44 1628 851851

Golder Associates Ltd. 100, Scotia Court Whitby, Ontario, L1N 8Y6 Canada T: +1 (905) 723 2727

